Effects of various parameters on nanofluid thermal conductivity

被引:362
作者
Jang, Seok Pil
Choi, Stephen U. S.
机构
[1] Argonne Natl Lab, Energy Syst Div, Argonne, IL 60439 USA
[2] Hankuk Aviat Univ, Sch Aerosp & Mech Engn, Goyang 412791, Gyeonggi Do, South Korea
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2007年 / 129卷 / 05期
关键词
nanofluids; thermal conductivity; Brownian motion; Brownian-motion-induced nanoconvection;
D O I
10.1115/1.2712475
中图分类号
O414.1 [热力学];
学科分类号
摘要
The addition of a small amount of nanoparticles in heat transfer fluids results in the new thermal phenomena of nanofluids (nanoparticle-fluid suspensions) reported in many investigations. However traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain the thermal behavior of nanofluids. Recently, Jang and Choi proposed and modeled for the first time the Brownian-motion-induced nanoconvection as a key nanoscale mechanism governing the thermal behavior of nanofluids, but did not clearly explain this and other new concepts used in the model. This paper explains in detail the new concepts and simplifying assumptions and reports the effects of various parameters such as the ratio of the thermal conductivity of nanoparticles to that of a base fluid, volume fraction, nanoparticle size, and temperature on the effective thermal conductivity of nanofluids. Comparison of model predictions with published experimental data shows good agreement for nanofluids containing oxide, metallic, and carbon nanotubes.
引用
收藏
页码:617 / 623
页数:7
相关论文
共 39 条
[1]  
BARCOHEN A, 1986, HEAT TRANSFER ENG, V6, P596
[2]  
BEJAN A, 1995, CONVECTIVE HEAT TRAN, pCH2
[3]   Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles [J].
Chen, G .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (03) :539-545
[4]   PREDICTION OF THERMAL CONDUCTIVITY OF 2-PHASE AND 3-PHASE SOLID HETEROGENEOUS MIXTURES [J].
CHENG, SC ;
VACHON, RI .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1969, 12 (03) :249-&
[5]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[6]   Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement -: art. no. 153107 [J].
Chon, CH ;
Kihm, KD ;
Lee, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2005, 87 (15) :1-3
[7]   Temperature dependence of thermal conductivity enhancement for nanofluids [J].
Das, SK ;
Putra, N ;
Thiesen, P ;
Roetzel, W .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (04) :567-574
[8]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[9]  
Einstein A., 1956, INVESTIGATION THEORY
[10]   Role of Brownian motion hydrodynamics on nanofluid thermal conductivity [J].
Evans, W ;
Fish, J ;
Keblinski, P .
APPLIED PHYSICS LETTERS, 2006, 88 (09)