Potential Energy Landscape for Hot Electrons in Periodically Nanostructured Graphene

被引:82
作者
Borca, B. [1 ]
Barja, S. [1 ,2 ]
Garnica, M. [1 ,2 ]
Sanchez-Portal, D. [3 ,4 ]
Silkin, V. M. [3 ,4 ,5 ]
Chulkov, E. V. [3 ,4 ,6 ]
Hermanns, C. F. [1 ]
Hinarejos, J. J. [1 ,7 ]
Vazquez de Parga, A. L. [1 ,7 ]
Arnau, A. [3 ,4 ,6 ]
Echenique, P. M. [3 ,4 ,6 ]
Miranda, R. [1 ,2 ,7 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[2] IMDEA Nanociencia, Madrid 28049, Spain
[3] MPC, Ctr Fis Mat CSIC UPV EHU, San Sebastian 20018, Spain
[4] DIPC, San Sebastian 20018, Spain
[5] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[6] Fac Quim, Dept Fis Mat UPV EHU, San Sebastian 20080, Spain
[7] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain
关键词
GRAPHITE; STATES; SURFACES; RU(0001); IMAGE;
D O I
10.1103/PhysRevLett.105.036804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the spatial variations of the unoccupied electronic states of graphene epitaxially grown on Ru(0001) and observed three unexpected features: the first graphene image state is split in energy; unlike all other image states, the split state does not follow the local work function modulation, and a new interfacial state at +3 eV appears on some areas of the surface. First-principles calculations explain the observations and permit us to conclude that the system behaves as a self-organized periodic array of quantum dots.
引用
收藏
页数:4
相关论文
共 27 条
[1]   TUNNELING SPECTROSCOPY AND INVERSE PHOTOEMISSION - IMAGE AND FIELD STATES [J].
BINNIG, G ;
FRANK, KH ;
FUCHS, H ;
GARCIA, N ;
REIHL, B ;
ROHRER, H ;
SALVAN, F ;
WILLIAMS, AR .
PHYSICAL REVIEW LETTERS, 1985, 55 (09) :991-994
[2]   Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001) [J].
Brugger, Thomas ;
Guenther, Sebastian ;
Wang, Bin ;
Dil, J. Hugo ;
Bocquet, Marie-Laure ;
Osterwalder, Juerg ;
Wintterlin, Joost ;
Greber, Thomas .
PHYSICAL REVIEW B, 2009, 79 (04)
[3]   The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds [J].
Csányi, G ;
Littlewood, PB ;
Nevidomskyy, AH ;
Pickard, CJ ;
Simons, BD .
NATURE PHYSICS, 2005, 1 (01) :42-45
[4]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[5]   EXISTENCE AND DETECTION OF RYDBERG STATES AT SURFACES [J].
ECHENIQUE, PM ;
PENDRY, JB .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (10) :2065-2075
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   ADSORBATE BAND DISPERSIONS FOR C ON RU(0001) [J].
HIMPSEL, FJ ;
CHRISTMANN, K ;
HEIMANN, P ;
EASTMAN, DE ;
FEIBELMAN, PJ .
SURFACE SCIENCE, 1982, 115 (03) :L159-L164
[8]   FIELD-INDUCED RESONANCE STATES AT A SURFACE [J].
JASON, AJ .
PHYSICAL REVIEW, 1967, 156 (02) :266-&
[9]   First principles study of the graphene/Ru(0001) interface [J].
Jiang, De-en ;
Du, Mao-Hua ;
Dai, Sheng .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (07)
[10]   IDENTIFICATION OF METALS IN SCANNING-TUNNELING-MICROSCOPY VIA IMAGE STATES [J].
JUNG, T ;
MO, YW ;
HIMPSEL, FJ .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1641-1644