Design and application of stimulus-responsive peptide systems

被引:83
作者
Chockalingam, Karuppiah [1 ]
Blenner, Mark [1 ]
Banta, Scott [1 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
关键词
conformational changes; stimulus-responsive; peptides; bionanotechnology;
D O I
10.1093/protein/gzm008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability of peptides and proteins to change conformations in response to external stimuli such as temperature, pH and the presence of specific small molecules is ubiquitous in nature. Exploiting this phenomenon, numerous natural and designed peptides have been used to engineer stimulus-responsive systems with potential applications in important research areas such as biomaterials, nanodevices, biosensors, bioseparations, tissue engineering and drug delivery. This review describes prominent examples of both natural and designed synthetic stimulus-responsive peptide systems. While the future looks bright for stimulus-responsive systems based on natural and rationally engineered peptides, it is expected that the range of stimulants used to manipulate such systems will be significantly broadened through the use of combinatorial protein engineering approaches such as directed evolution. These new proteins and peptides will continue to be employed in exciting and high-impact research areas including bionanotechnology and synthetic biology.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 93 条
[1]   Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes [J].
Aggeli, A ;
Bell, M ;
Boden, N ;
Keen, JN ;
Knowles, PF ;
McLeish, TCB ;
Pitkeathly, M ;
Radford, SE .
NATURE, 1997, 386 (6622) :259-262
[2]   pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases [J].
Aggeli, A ;
Bell, M ;
Carrick, LM ;
Fishwick, CWG ;
Harding, R ;
Mawer, PJ ;
Radford, SE ;
Strong, AE ;
Boden, N .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (32) :9619-9628
[3]   Conformational behavior of ionic self-complementary peptides [J].
Altman, M ;
Lee, P ;
Rich, A ;
Zhang, SG .
PROTEIN SCIENCE, 2000, 9 (06) :1095-1105
[4]   Simple bioseparations using self-cleaving elastin-like polypeptide tags [J].
Banki, MR ;
Feng, LA ;
Wood, DW .
NATURE METHODS, 2005, 2 (09) :659-661
[5]   Engineering protein and peptide building blocks for nanotechnology [J].
Banta, Scott ;
Megeed, Zaki ;
Casali, Monica ;
Rege, Kaushal ;
Yarmush, Martin L. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (02) :387-401
[6]   CRYSTAL-STRUCTURE OF THE 50 KDA METALLOPROTEASE FROM SERRATIA-MARCESCENS [J].
BAUMANN, U .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 242 (03) :244-251
[7]   Stimuli-responsive polypeptide vesicles by conformation-specific assembly [J].
Bellomo, EG ;
Wyrsta, MD ;
Pakstis, L ;
Pochan, DJ ;
Deming, TJ .
NATURE MATERIALS, 2004, 3 (04) :244-248
[8]   Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy [J].
Bidwell, GL ;
Raucher, D .
MOLECULAR CANCER THERAPEUTICS, 2005, 4 (07) :1076-1085
[9]   Self-assembly of a β-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction [J].
Caplan, MR ;
Moore, PN ;
Zhang, SG ;
Kamm, RD ;
Lauffenburger, DA .
BIOMACROMOLECULES, 2000, 1 (04) :627-631
[10]   Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence [J].
Caplan, MR ;
Schwartzfarb, EM ;
Zhang, SG ;
Kamm, RD ;
Lauffenburger, DA .
BIOMATERIALS, 2002, 23 (01) :219-227