Tunneling into the edge of a compressible quantum Hall state

被引:77
作者
Shytov, AV [1 ]
Levitov, LS
Halperin, BI
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Inst Adv Study, Princeton, NJ 08540 USA
关键词
D O I
10.1103/PhysRevLett.80.141
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a composite-fermion theory of tunneling into the edge of a compressible quantum Hall system. The tunneling conductance is non-Ohmic, due to slow relaxation of electromagnetic and Chern-Simons field disturbances caused by the tunneling electron. Universal results are obtained in the limit of a large number of channels involved in the relaxation. The tunneling exponent is found to be a continuous function of the Hall resistivity p(xy), with a slope that is discontinuous at filling factor nu = 1/2, in the limit of vanishing bulk resistivity p(xx). When nu corresponds to a principal fractional quantized Hall state, our results agree with the chiral Luttinger liquid theories of Wen and Kane, Fisher, and Polchinski.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 31 条
[21]  
LEVITOV LS, 1997, JETP LETT, V66, P214
[22]   FRACTIONAL QUANTUM HALL-EFFECT AND CHERN-SIMONS GAUGE-THEORIES [J].
LOPEZ, A ;
FRADKIN, E .
PHYSICAL REVIEW B, 1991, 44 (10) :5246-5262
[23]   QUANTIZED HALL-EFFECT AND EDGE CURRENTS [J].
MACDONALD, AH ;
STREDA, P .
PHYSICAL REVIEW B, 1984, 29 (04) :1616-1619
[24]  
MAHAN GD, 1981, MANY PARTICLE PHYSIC
[25]   Indications of a Luttinger liquid in the fractional quantum hall regime [J].
Milliken, FP ;
Umbach, CP ;
Webb, RA .
SOLID STATE COMMUNICATIONS, 1996, 97 (04) :309-313
[26]  
NAZAROV YV, 1989, ZH EKSP TEOR FIZ, V68, P561
[27]   FORMATION OF A HIGH-QUALITY 2-DIMENSIONAL ELECTRON-GAS ON CLEAVED GAAS [J].
PFEIFFER, L ;
WEST, KW ;
STORMER, HL ;
EISENSTEIN, JP ;
BALDWIN, KW ;
GERSHONI, D ;
SPECTOR, J .
APPLIED PHYSICS LETTERS, 1990, 56 (17) :1697-1699
[28]  
Popov V. N., 1983, FUNCTIONAL INTEGRAL
[29]  
SHYTOV AV, IN PRESS