Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa -: Comparison of twelve xylanases in relation to their thermal stability

被引:170
作者
Hakulinen, N
Turunen, O
Jänis, J
Leisola, M
Rouvinen, J
机构
[1] Univ Joensuu, Dept Chem, FIN-80101 Joensuu, Finland
[2] Aalto Univ, FIN-02150 Espoo, Finland
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 07期
关键词
xylanase; glycoside hydrolases; family; 11; thermostability;
D O I
10.1046/j.1432-1033.2003.03496.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structures of thermophilic xylanases from Chaetomium thermophilum and Nonomuraea flexuosa were determined at 1.75 and 2.1 Angstrom resolution, respectively. Both enzymes have the overall fold typical to family 11 xylanases with two highly twisted beta-sheets forming a large cleft. The comparison of 12 crystal structures of family 11 xylanases from both mesophilic and thermophilic organisms showed that the structures of different xylanases are very similar. The sequence identity differences correlated well with the structural differences. Several minor modifications appeared to be responsible for the increased thermal stability of family 11 xylanases: (a) higher Thr : Ser ratio (b) increased number of charged residues, especially Arg, resulting in enhanced polar interactions, and (c) improved stabilization of secondary structures involved the higher number of residues in the beta-strands and stabilization of the alpha-helix region. Some members of family 11 xylanases have a unique strategy to improve their stability, such as a higher number of ion pairs or aromatic residues on protein surface, a more compact structure, a tighter packing, and insertions at some regions resulting in enhanced interactions.
引用
收藏
页码:1399 / 1412
页数:14
相关论文
共 58 条
[1]   THERMAL-STABILITY AND PROTEIN-STRUCTURE [J].
ARGOS, P ;
ROSSMANN, MG ;
GRAU, UM ;
ZUBER, H ;
FRANK, G ;
TRATSCHIN, JD .
BIOCHEMISTRY, 1979, 18 (25) :5698-5703
[2]   INTERLABORATORY TESTING OF METHODS FOR ASSAY OF XYLANASE ACTIVITY [J].
BAILEY, MJ ;
BIELY, P ;
POUTANEN, K .
JOURNAL OF BIOTECHNOLOGY, 1992, 23 (03) :257-270
[3]   ION-PAIRS IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 168 (04) :867-885
[4]   MICROBIAL XYLANOLYTIC SYSTEMS [J].
BIELY, P .
TRENDS IN BIOTECHNOLOGY, 1985, 3 (11) :286-290
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]   AROMATIC-AROMATIC INTERACTION - A MECHANISM OF PROTEIN-STRUCTURE STABILIZATION [J].
BURLEY, SK ;
PETSKO, GA .
SCIENCE, 1985, 229 (4708) :23-28
[7]  
Campbell RL., 1993, TRICHODERMA REESEI C, P63
[8]   STRUCTURE OF A HYPERTHERMOPHILIC TUNGSTOPTERIN ENZYME, ALDEHYDE FERREDOXIN OXIDOREDUCTASE [J].
CHAN, MK ;
MUKUND, S ;
KLETZIN, A ;
ADAMS, MWW ;
REES, DC .
SCIENCE, 1995, 267 (5203) :1463-1469
[9]   Increasing the thermostability of staphylococcal nuclease: Implications for the origin of protein thermostability [J].
Chen, JM ;
Lu, ZQ ;
Sakon, J ;
Stites, WE .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 303 (02) :125-130
[10]   PROTEIN UNFOLDING PATHWAYS EXPLORED THROUGH MOLECULAR-DYNAMICS SIMULATIONS [J].
DAGGETT, V ;
LEVITT, M .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 232 (02) :600-619