Schizosaccharomyces pombe ehs1p is involved in maintaining cell wall integrity and in calcium uptake

被引:27
作者
Carnero, E [1 ]
Ribas, JC [1 ]
García, B [1 ]
Durán, A [1 ]
Sánchez, Y [1 ]
机构
[1] CSIC, Inst Microbiol Bioquim, Dept Genet & Microbiol, Salamanca 37007, Spain
来源
MOLECULAR AND GENERAL GENETICS | 2000年 / 264卷 / 1-2期
关键词
calcium; cell wall integrity; echinocandin; fission yeast; protein kinase C;
D O I
10.1007/s004380000318
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Schizosaccharomyces pombe mutant ehs1-1 mutant was isolated on the basis of its hypersensitivity to Echinocandin and Calcofluor White, which inhibit cell wall synthesis. The mutant shows a thermosensitive growth phenotype that is suppressed in the presence of an osmotic stabiliser. The mutant also showed other cell wall-associated phenotypes, such as enhanced sensitivity to enzymatic cell wall degradation and an imbalance in polysaccharide synthesis. The ehs+ gene encodes a predicted integral membrane protein that is 30% identical to Saccharomyces cerevisiae Mid1p, a protein that has been proposed to form part of a calcium channel. As expected for such a function, we found that ehs1(+) is involved in intracellular Ca2+ accumulation. High external Ca2+ concentrations suppressed all phenotypes associated with the ehs1 null mutation, suggesting that the cell integrity defects of ehs1 mutants result from inadequate levels of calcium in the cell. We observed a genetic relationship between ehs1(+) and the protein kinase C homologue pck2(+). pck2(+) suppressed all phenotypes of ehs1-1 mutant cells. Overproduction of pck2p is deleterious to wild-type cells, increasing 1,3-beta-D-glucan synthase activity and promoting accumulation of extremely high levels of Ca2+. The lethality associated with pck2p, the increase in 1,3-beta-D-glucan synthase production and the strong Ca2+ accumulation are all dependent on the presence of ehs1p. Our results suggest that in fission yeast ehs1p forms part of a calcium channel that is involved in the cell wall integrity pathway that includes the kinase pck2p.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 57 条
[1]  
Arellano M, 1999, J CELL SCI, V112, P3569
[2]   Signalling in the yeasts: An informational cascade with links to the filamentous fungi [J].
Banuett, F .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) :249-+
[3]   Role of small G proteins in yeast cell polarization and wall biosynthesis [J].
Cabib, E ;
Drgonova, J ;
Drgon, T .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :307-333
[4]   PAPULACANDIN-B RESISTANCE IN BUDDING AND FISSION YEASTS - ISOLATION AND CHARACTERIZATION OF A GENE INVOLVED IN (1,3)BETA-D-GLUCAN SYNTHESIS IN SACCHAROMYCES-CEREVISIAE [J].
CASTRO, C ;
RIBAS, JC ;
VALDIVIESO, MH ;
VARONA, R ;
DELREY, F ;
DURAN, A .
JOURNAL OF BACTERIOLOGY, 1995, 177 (20) :5732-5739
[5]   MOLECULAR-BASIS OF CELL INTEGRITY AND MORPHOGENESIS IN SACCHAROMYCES-CEREVISIAE [J].
CID, VJ ;
DURAN, A ;
DELREY, F ;
SNYDER, MP ;
NOMBELA, C ;
SANCHEZ, M .
MICROBIOLOGICAL REVIEWS, 1995, 59 (03) :345-386
[6]   ISOLATION AND CHARACTERIZATION OF SACCHAROMYCES-CEREVISIAE MUTANTS RESISTANT TO ACULEACIN-A [J].
DEMORA, JF ;
GIL, R ;
SENTANDREU, R ;
HERRERO, E .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1991, 35 (12) :2596-2601
[7]   A SACCHAROMYCES-CEREVISIAE MUTANT WITH ECHINOCANDIN-RESISTANT 1,3-BETA-D-GLUCAN SYNTHASE [J].
DOUGLAS, CM ;
MARRINAN, JA ;
LI, W ;
KURTZ, MB .
JOURNAL OF BACTERIOLOGY, 1994, 176 (18) :5686-5696
[8]   THE SACCHAROMYCES-CEREVISIAE FKS1 (ETG1) GENE ENCODES AN INTEGRAL MEMBRANE-PROTEIN WHICH IS A SUBUNIT OF 1,3-BETA-D-GLUCAN SYNTHASE [J].
DOUGLAS, CM ;
FOOR, F ;
MARRINAN, JA ;
MORIN, N ;
NIELSEN, JB ;
DAHL, AM ;
MAZUR, P ;
BAGINSKY, W ;
LI, WL ;
ELSHERBEINI, M ;
CLEMAS, JA ;
MANDALA, SM ;
FROMMER, BR ;
KURTZ, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12907-12911
[9]   Rho1p, a yeast protein at the interface between cell polarization and morphogenesis [J].
Drgonova, J ;
Drgon, T ;
Tanaka, K ;
Kollar, R ;
Chen, GC ;
Ford, RA ;
Chan, CSM ;
Takai, Y ;
Cabib, E .
SCIENCE, 1996, 272 (5259) :277-279