Clustering data streams

被引:272
作者
Guha, S [1 ]
Mishra, N [1 ]
Motwani, R [1 ]
O'Callaghan, L [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
来源
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 2000年
关键词
D O I
10.1109/SFCS.2000.892124
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study clustering under the data stream model of computation where: given a sequence of points, the objective is to maintain a consistently good clustering of the sequence observed so far, using a small amount of: memory and time. The data stream model is relevant to new classes of applications involving massive data sets, such as web click stream analysis and multimedia data analysis. We give constant-factor approximation algorithms for the Ic-Median problem in the data stream model of computation in a single pass. We also show negative results implying that our algorithms cannot be improved in a certain sense.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 17 条
  • [11] KORUPOLU MR, 1998, P 9 ANN ACM SIAM S D, P1
  • [12] Manku GS, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P251, DOI 10.1145/304181.304204
  • [13] MANKU GS, 1998, P ACM SIGMOD INT C M, P426, DOI DOI 10.1145/276304.276342
  • [14] Martin G. N., 1983, P 24 ANN S FDN COMP, P76
  • [15] MISHRA N, 2000, WAY SUBLINEAR TIME A
  • [16] SELECTION AND SORTING WITH LIMITED STORAGE
    MUNRO, JI
    PATERSON, MS
    [J]. THEORETICAL COMPUTER SCIENCE, 1980, 12 (03) : 315 - 323
  • [17] Weber A., 1909, UEBER STANDORT IND E