Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance

被引:38
作者
Yang, H [1 ]
Zhao, TS [1 ]
Ye, Q [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
direct methanol fuel cells; two-phase flow; gas injection; flow velocity; void fraction; flow field;
D O I
10.1016/j.elecom.2004.08.012
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Contrary to conventional conceptions, we find that an external addition of non-reacting gases to the anode flow field of a direct methanol fuel cell led to improved cell performance. Our theoretical analysis shows that an increase in void fraction of the gas phase in flow channels reduces the cross sectional area of the liquid phase, thereby increasing the liquid velocity. The increased liquid velocity enhances the mass transfer of methanol from the flow channel to the gas diffusion layer and hence, improves cell performance. Following the same idea of accelerating the liquid velocity by reducing channel depth, we further demonstrate experimentally that thinning channel from 3.0 to 0.5 mm resulted in an increase in peak power density by 67.5%. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1098 / 1103
页数:6
相关论文
共 35 条
[1]   On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte [J].
Alonso-Vante, N ;
Bogdanoff, P ;
Tributsch, H .
JOURNAL OF CATALYSIS, 2000, 190 (02) :240-246
[2]   Carbon dioxide evolution patterns in direct methanol fuel cells [J].
Argyropoulos, P ;
Scott, K ;
Taama, WM .
ELECTROCHIMICA ACTA, 1999, 44 (20) :3575-3584
[3]   Influence of flow field design on the performance of a direct methanol fuel cell [J].
Aricò, AS ;
Cretì, P ;
Baglio, V ;
Modica, E ;
Antonucci, V .
JOURNAL OF POWER SOURCES, 2000, 91 (02) :202-209
[4]   Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution [J].
Bewer, T ;
Beckmann, T ;
Dohle, H ;
Mergel, J ;
Stolten, D .
JOURNAL OF POWER SOURCES, 2004, 125 (01) :1-9
[5]   Fuel cells: a survey of current developments [J].
Cropper, MAJ ;
Geiger, S ;
Jollie, DM .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :57-61
[6]   International activities in DMFC R&D:: status of technologies and potential applications [J].
Dillon, R ;
Srinivasan, S ;
Aricò, AS ;
Antonucci, V .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :112-126
[7]   Fuel cells for portable applications [J].
Dyer, CK .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :31-34
[8]   METHANOL ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RN ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (46) :12020-12029
[9]   Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells [J].
Jia, NY ;
Lefebvre, MC ;
Halfyard, J ;
Qi, ZG ;
Pickup, PG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (12) :529-531
[10]   Comparative studies of methanol crossover and cell performance for a DMFC [J].
Jiang, RZ ;
Chu, DR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A69-A76