Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose

被引:84
作者
Tong, Lei [1 ]
Denu, John M. [1 ]
机构
[1] Univ Wisconsin, Dept Biomol Chem, Sch Med & Publ Hlth, Madison, WI 53706 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2010年 / 1804卷 / 08期
关键词
Sirtuin; Sir2; NAD; Deacetylation; Deacetylase; O-acetyl-ADP-ribose; 39-KDA POLY(ADP-RIBOSE) GLYCOHYDROLASE; YEAST SACCHAROMYCES-CEREVISIAE; SILENCING PROTEIN SIR2; LIFE-SPAN EXTENSION; OXIDATIVE STRESS; CALORIE RESTRICTION; NUDIX HYDROLASES; TELOMERIC HETEROCHROMATIN; COBALAMIN BIOSYNTHESIS; HISTONE DEACETYLATION;
D O I
10.1016/j.bbapap.2010.02.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuins catalyze the NAD(+)-dependent deacetylation of target proteins, which are regulated by this reversible lysine modification. During deacetylation, the glycosidic bond of the nicotinamide ribose is cleaved to yield nicotinamide and the ribose accepts the acetyl group from substrate to produce O-acetyl-ADP-ribose (OAADPr), which exists as an similar to 50:50 mixture of 2' and 3' isomers at neutral pH. Discovery of this metabolite has fueled the idea that OAADPr may play an important role in the biology associated with sirtuins, acting as a signaling molecule and/or an important substrate for downstream enzymatic processes. Evidence for OAADPr-metabolizing enzymes indicates that at least three distinct activities exist that could modulate the cellular levels of this NAD(+)-derived metabolite. In Saccharomyces cerevisiae, NUDIX hydrolase Ysa1 cleaves OAADPr to AMP and 2- and 3-O-acetylribose-5-phosphate, lowering the cellular levels of OAADPr. A buildup of OAADPr and ADPr has been linked to a metabolic shift that lowers endogenous reactive oxygen species and diverts glucose towards preventing oxidative damage. In vitro, the mammalian enzyme ARH3 hydrolyzes OAADPr to acetate and ADPr. A third nuclear-localized activity appears to utilize OAADPr to transfer the acetyl-group to another small molecule, whose identity remains unknown. Recent studies suggest that OAADPr may regulate gene silencing by facilitating the assembly and loading of the Sir2-4 silencing complex onto nucleosomes. In mammalian cells, the Trpm2 cation channel is gated by both OAADPr and ADP-ribose. Binding is mediated by the NUDIX homology (NudT9H) domain found within the intracellular portion of the channel. OAADPr is capable of binding the Macro domain of splice variants from histone protein MacroH2A, which is highly enriched at heterochromatic regions. With recently developed tools, the pace of new discoveries of OAADPr-dependent processes should facilitate new molecular insight into the diverse biological processes modulated by sirtuins. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1617 / 1625
页数:9
相关论文
共 93 条
[81]   Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose [J].
Tanner, KG ;
Landry, J ;
Sternglanz, R ;
Denu, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14178-14182
[82]   Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product [J].
Tanny, JC ;
Moazed, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :415-420
[83]   An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing [J].
Tanny, JC ;
Dowd, GJ ;
Huang, J ;
Hilz, H ;
Moazed, D .
CELL, 1999, 99 (07) :735-745
[84]   Sensing NAD metabolites through macro domains [J].
Till, Susanne ;
Ladurner, Andreas G. .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2009, 14 :3246-3258
[85]   Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans [J].
Tissenbaum, HA ;
Guarente, L .
NATURE, 2001, 410 (6825) :227-230
[86]   Hydrolase Regulates NAD+ Metabolites and Modulates Cellular Redox [J].
Tong, Lei ;
Lee, Susan ;
Denu, John M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (17) :11256-11266
[87]   THE COBT GENE OF SALMONELLA-TYPHIMURIUM ENCODES THE NAMN-5,6-DIMETHYLBENZIMIDAZOLE PHOSPHORIBOSYLTRANSFERASE RESPONSIBLE FOR THE SYNTHESIS OF N(1)-(5-PHOSPHO-ALPHA-D-RIBOSYL)-5,6-DIMETHYLBENZIMIDAZOLE, AN INTERMEDIATE IN THE SYNTHESIS OF THE NUCLEOTIDE LOOP OF COBALAMIN [J].
TRZEBIATOWSKI, JR ;
OTOOLE, GA ;
ESCALANTESEMERENA, JC .
JOURNAL OF BACTERIOLOGY, 1994, 176 (12) :3568-3575
[88]   CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2 [J].
Tsang, AW ;
Escalante-Semerena, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :31788-31794
[89]   Metals, toxicity and oxidative stress [J].
Valko, M ;
Morris, H ;
Cronin, MTD .
CURRENT MEDICINAL CHEMISTRY, 2005, 12 (10) :1161-1208
[90]   Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin [J].
Vaquero, A ;
Scher, M ;
Lee, DH ;
Erdjument-Bromage, H ;
Tempst, P ;
Reinberg, D .
MOLECULAR CELL, 2004, 16 (01) :93-105