Modern biomaterials: a review-bulk properties and implications of surface modifications

被引:421
作者
Roach, Paul [1 ]
Eglin, David [1 ]
Rohde, Kirsty [1 ]
Perry, Carole C. [1 ]
机构
[1] Nottingham Trent Univ, Div Chem, Interdisciplinary Biomed Res Ctr, Sch Biomed & Nat Sci, Nottingham, England
关键词
biomaterials; cell-surface interactions; protein-surface interactions; topography; implantation; physicochemical;
D O I
10.1007/s10856-006-0064-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This review concerns the importance of length and time on physicochemical interactions between living tissue and biomaterials that occur on implantation. The review provides information on material host interactions, materials for medical applications and cell surface interactions, and then details the extent of knowledge concerning the role(s) that surface chemistry and topography play during the first stage of implant integration, namely protein adsorption. The key points are illustrated by data from model in vitro studies. Host implant interactions begin nanoseconds after first contact and from then on are in a state of flux due to protein adsorption, cell adhesion and physical and chemical alteration of the implanted material. The many questions concerning the conformational form and control of bound proteins and how this may impact on cell adhesion in the first instance and later on cell signalling and implant integration can be answered by systematic investigations using model materials. Only then we will be in a more informed position to design new materials for use in the body.
引用
收藏
页码:1263 / 1277
页数:15
相关论文
共 185 条
[11]  
ATEH DD, 2005, BIOCOMPATIBILITY MAT, V1, P411
[12]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[13]  
Balasubramanian V, 1999, J BIOMED MATER RES, V44, P253, DOI 10.1002/(SICI)1097-4636(19990305)44:3<253::AID-JBM3>3.3.CO
[14]  
2-B
[15]   Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts [J].
Beningo, KA ;
Dembo, M ;
Kaverina, I ;
Small, JV ;
Wang, YL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :881-887
[16]   The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces [J].
Benoit, DSW ;
Anseth, KS .
BIOMATERIALS, 2005, 26 (25) :5209-5220
[17]  
Bhat VD, 1998, J BIOMED MATER RES, V40, P57, DOI 10.1002/(SICI)1097-4636(199804)40:1<57::AID-JBM7>3.3.CO
[18]  
2-6
[19]   Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering [J].
Blaker, JJ ;
Maquet, V ;
Jérôme, R ;
Boccaccini, AR ;
Nazhat, SN .
ACTA BIOMATERIALIA, 2005, 1 (06) :643-652
[20]   Integrins in development:: Moving on, responding to, and sticking to the extracellular matrix [J].
Bökel, C ;
Brown, NH .
DEVELOPMENTAL CELL, 2002, 3 (03) :311-321