Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius

被引:138
作者
Consonni, V. [1 ]
Knelangen, M. [1 ]
Geelhaar, L. [1 ]
Trampert, A. [1 ]
Riechert, H. [1 ]
机构
[1] Paul Drude Inst Solid State Elect, D-10117 Berlin, Germany
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 08期
关键词
MOLECULAR-BEAM EPITAXY; MICROSTRUCTURAL EVOLUTION; MISFIT DISLOCATIONS; SPONTANEOUS GROWTH; ELASTIC PROPERTIES; STRAINED ISLANDS; MBE-GROWTH; ALN; TEMPERATURE; NANOCOLUMNS;
D O I
10.1103/PhysRevB.81.085310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The formation mechanisms of epitaxial GaN nanowires grown within a self-induced approach by molecular-beam epitaxy have been investigated at the onset of the nucleation process by combining in situ reflection high-energy electron-diffraction measurements and ex situ high-resolution transmission electron microscopy imaging. It is shown that the self-induced growth of GaN nanowires on the AlN buffer layer is initially governed by the nucleation of dislocation-free coherent islands. These coherent islands develop through a series of shape transitions from spherical caps through truncated to full pyramids in order to elastically relieve the lattice-mismatch-induced strain. A strong correlation between the subsequent process of plastic relaxation and the final shape transition from full pyramids toward the very first nanowires is found. The experimental critical radius at which the misfit dislocation nucleates is in very good agreement with the theoretical critical radius for the formation of the misfit dislocation in full pyramids, showing that the plastic relaxation process does take place within full pyramids: this critical size corresponds to the initial radius of the very first nanowires. We associate the plastic relaxation of the lattice-mismatch-induced strain occurring within full pyramids with a drastic change in their total free energy: this gives rise to a driving force for the shape transition toward the very first nanowires, which is mainly due to the anisotropy of surface energy.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Quantitative characterization of GaN quantum-dot structures in AlN by high-resolution transmission electron microscopy [J].
Arlery, M ;
Rouvière, JL ;
Widmann, F ;
Daudin, B ;
Feuillet, G ;
Mariette, H .
APPLIED PHYSICS LETTERS, 1999, 74 (22) :3287-3289
[2]   Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy [J].
Bertness, K. A. ;
Roshko, A. ;
Mansfield, L. M. ;
Harvey, T. E. ;
Sanford, N. A. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (13) :3154-3158
[3]   Nucleation conditions for catalyst-free GaN nanowires [J].
Bertness, K. A. ;
Roshko, A. ;
Mansfield, L. M. ;
Harvey, T. E. ;
Sanford, N. A. .
JOURNAL OF CRYSTAL GROWTH, 2007, 300 (01) :94-99
[4]   Spontaneously grown GaN and AlGaN nanowires [J].
Bertness, KA ;
Roshko, A ;
Sanford, NA ;
Barker, JM ;
Davydov, A .
JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) :522-527
[5]   One-dimensional heterostructures in semiconductor nanowhiskers [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :1058-1060
[6]   Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy [J].
Calarco, Raffaella ;
Meijers, Ralph J. ;
Debnath, Ratan K. ;
Stoica, Toma ;
Sutter, Eli ;
Luth, Hans. .
NANO LETTERS, 2007, 7 (08) :2248-2251
[7]   Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy [J].
Calleja, E ;
Sánchez-García, MA ;
Sánchez, FJ ;
Calle, F ;
Naranjo, FB ;
Muñoz, E ;
Jahn, U ;
Ploog, K .
PHYSICAL REVIEW B, 2000, 62 (24) :16826-16834
[8]   Critical diameters and temperature domains for MBE growth of III-V nanowires on lattice mismatched substrates [J].
Cirlin, G. E. ;
Dubrovskii, V. G. ;
Soshnikov, I. P. ;
Sibirev, N. V. ;
Samsonenko, Yu. B. ;
Bouravleuv, A. D. ;
Harmand, J. C. ;
Glas, F. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (04) :112-114
[9]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[10]   Shape transition in growth of strained islands [J].
Daruka, I ;
Tersoff, J ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 1999, 82 (13) :2753-2756