Invariant foliations near normally hyperbolic invariant manifolds for semiflows

被引:58
作者
Bates, PW [1 ]
Lu, KI
Zeng, CC
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1090/S0002-9947-00-02503-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact C-1 manifold which is invariant and normally hyperbolic with respect to a C-1 semiflow in a Banach space. Then in an epsilon-neighborhood of M there exist local C-1 center-stable and center-unstable manifolds W-cs (epsilon) and W-cu (epsilon), respectively. Here we show that W-cs (epsilon) and W-cu (epsilon) may each be decomposed into the disjoint union of C-1 submanifolds (leaves) in such a way that the semi ow takes leaves into leaves of the same collection. Furthermore, each leaf intersects M in a single point which determines the asymptotic behavior of all points of that leaf in either forward or backward time.
引用
收藏
页码:4641 / 4676
页数:36
相关论文
共 40 条
[1]  
[Anonymous], MEM AM MATH SOC
[2]  
Anosov D.V., 1967, P STEKLOV I MATH, P90
[3]   PARTIAL LINEARIZATION FOR NONINVERTIBLE MAPPINGS [J].
AULBACH, B ;
GARAY, BM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (04) :505-542
[4]  
BATES P. W., 1994, J. Dynam. Differential Equations, V6, P101
[5]  
Bates P.W., 1989, Dyn. Rep., V2, P1
[6]  
BATES PW, UNPUB INVARIANT MANI
[7]   SMOOTH CONJUGACY OF CENTER MANIFOLDS [J].
BURCHARD, A ;
DENG, B ;
LU, KN .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :61-77
[8]   Invariant foliations for C-1 semigroups in Banach spaces [J].
Chen, XY ;
Hale, JK ;
Tan, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (02) :283-318
[9]   FLOQUET THEORY FOR PARABOLIC DIFFERENTIAL-EQUATIONS [J].
CHOW, SN ;
LU, KN ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (01) :147-200
[10]   SMOOTH INVARIANT FOLIATIONS IN INFINITE DIMENSIONAL SPACES [J].
CHOW, SN ;
LIN, XB ;
LU, KN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :266-291