Discriminating states:: The quantum Chernoff bound

被引:385
作者
Audenaert, K. M. R.
Calsamiglia, J.
Munoz-Tapia, R.
Bagan, E.
Masanes, Ll.
Acin, A.
Verstraete, F.
机构
[1] Univ London Imperial Coll Sci & Technol, Inst Math Sci, London SW7 2PG, England
[2] Univ Autonoma Barcelona, Fis Teor Grp, Bellaterra 08193, Barcelona, Spain
[3] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[4] ICFO, Castelldefels 08860, Barcelona, Spain
[5] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
关键词
16;
D O I
10.1103/PhysRevLett.98.160501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of discriminating two different quantum states in the setting of asymptotically many copies, and determine the minimal probability of error. This leads to the identification of the quantum Chernoff bound, thereby solving a long-standing open problem. The bound reduces to the classical Chernoff bound when the quantum states under consideration commute. The quantum Chernoff bound is the natural symmetric distance measure between quantum states because of its clear operational meaning and because it does not seem to share some of the undesirable features of other distance measures.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1978, THEOR PROB APPL
[2]  
[Anonymous], 2006, QUANTUM INFORM INTRO, DOI DOI 10.1007/3-540-30266-2
[3]  
AUDENAERT K, QUANTPH0610027
[4]   Efficient quantum circuits for Schur and Clebsch-Gordan transforms [J].
Bacon, Dave ;
Chuang, Isaac L. ;
Harrow, Aram W. .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[5]  
Bhatia R., 2013, MATRIX ANAL
[6]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[7]  
HAYASHI M, QUANTPH0611013
[8]  
Helstrom C.W., 1976, QUANTUM DETECTION ES
[9]   THE PROPER FORMULA FOR RELATIVE ENTROPY AND ITS ASYMPTOTICS IN QUANTUM PROBABILITY [J].
HIAI, F ;
PETZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :99-114
[10]  
HOLEVO CW, 1979, QUANTUM DETECTION ES, V23, P411