Scale and translation invariant collaborative filtering systems

被引:33
作者
Lemire, D [1 ]
机构
[1] Natl Res Council Canada, Inst Informat Technol, Fredericton, NB E3B 9W4, Canada
来源
INFORMATION RETRIEVAL | 2005年 / 8卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
recommender system; regression; incomplete vectors; energy minimization; e-commerce;
D O I
10.1023/B:INRT.0000048492.50961.a6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative filtering systems are prediction algorithms over sparse data sets of user preferences. We modify a wide range of state-of-the-art collaborative filtering systems to make them scale and translation invariant and generally improve their accuracy without increasing their computational cost. Using the EachMovie and the Jester data sets, we show that learning-free constant time scale and translation invariant schemes outperforms other learning-free constant time schemes by at least 3% and perform as well as expensive memory-based schemes ( within 4%). Over the Jester data set, we show that a scale and translation invariant Eigentaste algorithm outperforms Eigentaste 2.0 by 20%. These results suggest that scale and translation invariance is a desirable property.
引用
收藏
页码:129 / 150
页数:22
相关论文
共 18 条
[1]  
AMRANI MYE, 2001, IC AI 01, P1225
[2]  
[Anonymous], 1998, EMPIRICAL ANAL PREDI
[3]  
BILLSUS D, 1998, AAAI WORKSH REC SYST
[4]  
CANNY J, 2002, SIGIR 2002
[5]  
DRINEAS P., 2002, STOC '02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, P82
[6]  
GHAHRAMANI Z, 1994, 108 MIT CTR BIOL COM
[7]   Eigentaste: A constant time collaborative filtering algorithm [J].
Goldberg, K ;
Roeder, T ;
Gupta, D ;
Perkins, C .
INFORMATION RETRIEVAL, 2001, 4 (02) :133-151
[8]  
HERLOCKER J, 1999, P RES DEV INF RETR
[9]  
KARYPIS G, 2000, 00046 U MINN DEP COM
[10]  
Pennock DM, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P729