Geometric properties of passive random advection

被引:12
作者
Boldyrev, SA [1 ]
Schekochihin, AA [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08543 USA
关键词
D O I
10.1103/PhysRevE.62.545
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Geometric properties of a random Gaussian short-time correlated velocity field are studied by considering the statistics of a passively advected metric tensor. That describes the universal properties of the fluctuations of tensor objects frozen into the fluid and passively advected by it. The problem of the one-point statistics of covariant and contravariant tensors is solved exactly, provided that the advected fields do not reach diffusive scales, which would break the symmetry of the problem.
引用
收藏
页码:545 / 552
页数:8
相关论文
共 25 条
[1]   Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem [J].
Balkovsky, E ;
Fouxon, A .
PHYSICAL REVIEW E, 1999, 60 (04) :4164-4174
[3]   Slow modes in passive advection [J].
Bernard, D ;
Gawedzki, K ;
Kupiainen, A .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :519-569
[4]  
BOLDYREV S, HEPTH9805100
[5]   Turbulence without pressure in d dimensions [J].
Boldyrev, SA .
PHYSICAL REVIEW E, 1999, 59 (03) :2971-2974
[6]  
BOLDYREV SA, CHAODYN9907034
[7]  
BOLDYREV SA, UNPUB
[8]   Small-scale turbulent dynamo [J].
Chertkov, M ;
Falkovich, G ;
Kolokolov, I ;
Vergassola, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4065-4068
[9]   EXACT FIELD-THEORETICAL DESCRIPTION OF PASSIVE SCALAR CONVECTION IN AN N-DIMENSIONAL LONG-RANGE VELOCITY-FIELD [J].
CHERTKOV, M ;
GAMBA, A ;
KOLOKOLOV, I .
PHYSICS LETTERS A, 1994, 192 (5-6) :435-443
[10]   STATISTICS OF A PASSIVE SCALAR ADVECTED BY A LARGE-SCALE 2-DIMENSIONAL VELOCITY-FIELD - ANALYTIC SOLUTION [J].
CHERTKOV, M ;
FALKOVICH, G ;
KOLOKOLOV, I ;
LEBEDEV, V .
PHYSICAL REVIEW E, 1995, 51 (06) :5609-5627