Turbulence without pressure in d dimensions

被引:6
作者
Boldyrev, SA [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08543 USA
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 03期
关键词
D O I
10.1103/PhysRevE.59.2971
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The randomly driven Navier-Stokes equation without pressure in d-dimensional space is considered as a model of strong turbulence in a compressible fluid. We derive a closed equation for the velocity-gradient probability density function. We find the asymptotics of this function for the case of the gradient velocity field (Burgers turbulence) and provide a numerical solution for the two-dimensional case. Application of these results to the velocity-difference probability density function is discussed. [S1063-651X(99)06203-0].
引用
收藏
页码:2971 / 2974
页数:4
相关论文
共 25 条
[1]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[2]  
BALKOVSKY E, CHAODYN9609005
[3]   Burgers turbulence, intermittency, and nonuniversality [J].
Boldyrev, SA .
PHYSICS OF PLASMAS, 1998, 5 (05) :1681-1687
[4]   Velocity-difference probability density functions for Burgers turbulence [J].
Boldyrev, SA .
PHYSICAL REVIEW E, 1997, 55 (06) :6907-6910
[5]  
BOLDYREV SA, HEPTH9610080
[6]   SCALING AND INTERMITTENCY IN BURGERS TURBULENCE [J].
BOUCHAUD, JP ;
MEZARD, M ;
PARISI, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3656-3674
[7]   Velocity fluctuations in forced Burgers turbulence [J].
Bouchaud, JP ;
Mezard, M .
PHYSICAL REVIEW E, 1996, 54 (05) :5116-5121
[8]  
BOUCHAUD JP, 1996, CONDMAT9607006
[9]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION - ANOMALOUS SCALING AND PROBABILITY DENSITY-FUNCTIONS [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 52 (05) :5681-5684
[10]   Steady-state Burgers turbulence with large-scale forcing [J].
Gotoh, T ;
Kraichnan, RH .
PHYSICS OF FLUIDS, 1998, 10 (11) :2859-2866