Velocity-difference probability density functions for Burgers turbulence

被引:40
作者
Boldyrev, SA
机构
[1] Princeton University, Princeton, NJ, 08543
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 06期
关键词
D O I
10.1103/PhysRevE.55.6907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper the Polyakov equation [Phys. Rev. E 52, 6183 (1995)] for the velocity-difference probability density functions, with the random Gaussian external force, with the correlation function kappa(y)similar to 1-y(alpha), is analyzed. Solutions for the cases alpha = {2,1/2,1} are found, which agree very well with available numerical results. It is also argued that the stationary regime of Burgers turbulence can depend not only on the distribution of the external force, but also on the dissipative regularization.
引用
收藏
页码:6907 / 6910
页数:4
相关论文
共 15 条
[1]  
[Anonymous], UNPUB
[2]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[3]  
BALKOVSKY E, CHAODYN9609005
[4]  
BOLDYREV SA, HEPTH9610080
[5]   SCALING AND INTERMITTENCY IN BURGERS TURBULENCE [J].
BOUCHAUD, JP ;
MEZARD, M ;
PARISI, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3656-3674
[6]  
Boyd J. P., 1994, Journal of Scientific Computing, V9, P81, DOI 10.1007/BF01573179
[7]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION - ANOMALOUS SCALING AND PROBABILITY DENSITY-FUNCTIONS [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 52 (05) :5681-5684
[8]   Instantons in the Burgers equation [J].
Gurarie, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4908-4914
[9]  
GURARIE V, HEPTH9512128
[10]  
IVASHKEVICH EV, HEPTH9610221