Momentum scale expansion of sharp cutoff flow equations

被引:62
作者
Morris, TR
机构
[1] Physics Department, University of Southampton
关键词
D O I
10.1016/0550-3213(95)00541-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show how the exact renormalization group for the effective action with a sharp momentum cutoff, may be organized by expanding one-particle irreducible parts in terms of homogeneous functions of momenta of integer degree (Taylor expansions not being possible). A systematic series of approximations - the O(p(M)) approximations - result from discarding from these parts, all terms of higher than the M(th) degree. These approximations preserve a field reparametrization invariance, ensuring that the field's anomalous dimension is unambiguously determined. The lowest order approximation coincides with the local potential approximation to the Wegner-Houghton equations. We discuss the practical difficulties with extending the approximation beyond O(p(0)).
引用
收藏
页码:477 / 503
页数:27
相关论文
共 49 条
[11]   NONPERTURBATIVE RENORMALIZATION-GROUP CALCULATIONS FOR CONTINUUM SPIN SYSTEMS [J].
GOLNER, GR .
PHYSICAL REVIEW B, 1986, 33 (11) :7863-7866
[12]   CALCULATION OF CRITICAL EXPONENT ETA VIA RENORMALIZATION-GROUP RECURSION FORMULAS [J].
GOLNER, GR .
PHYSICAL REVIEW B, 1973, 8 (01) :339-345
[13]   GRADIENT FLOWS FROM AN APPROXIMATION TO THE EXACT RENORMALIZATION-GROUP [J].
HAAGENSEN, PE ;
KUBYSHIN, Y ;
LATORRE, JI ;
MORENO, E .
PHYSICS LETTERS B, 1994, 323 (3-4) :330-338
[14]   FIXED-POINT STRUCTURE OF SCALAR FIELDS [J].
HALPERN, K ;
HUANG, K .
PHYSICAL REVIEW LETTERS, 1995, 74 (18) :3526-3529
[15]   RENORMALIZATION-GROUP STUDY OF SCALAR FIELD-THEORIES [J].
HASENFRATZ, A ;
HASENFRATZ, P .
NUCLEAR PHYSICS B, 1986, 270 (04) :687-701
[16]   THE CUTOFFS DEPENDENCE OF THE HIGGS MESON MASS AND THE ONSET OF NEW PHYSICS IN THE STANDARD MODEL [J].
HASENFRATZ, P ;
NAGER, J .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1988, 37 (03) :477-487
[17]   SPHERICAL MODEL WITH LONG-RANGE FERROMAGNETIC INTERACTIONS [J].
JOYCE, GS .
PHYSICAL REVIEW, 1966, 146 (01) :349-&
[18]  
KAWASAKI K, 1981, PERSPECTIVES STATIST
[19]   TRIVIALITY BOUND OF LINEAR DELTA-MODEL WITH FINITE PION MASS [J].
KIMURA, K ;
SANDA, AI ;
SUGIYAMA, Y .
MODERN PHYSICS LETTERS A, 1994, 9 (28) :2587-2597
[20]   QUANTUM AND THERMAL FLUCTUATIONS IN-FIELD THEORY [J].
LIAO, SB ;
POLONYI, J ;
XU, DP .
PHYSICAL REVIEW D, 1995, 51 (02) :748-764