Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme

被引:44
作者
Jones, PC [1 ]
Hermolin, J [1 ]
Jiang, WP [1 ]
Fillingame, RH [1 ]
机构
[1] Univ Wisconsin, Dept Biomol Chem, Sch Med, Madison, WI 53706 USA
关键词
D O I
10.1074/jbc.M003687200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transmembrane sector of the F0F1 rotary ATP synthase is proposed to organize with an oligomeric ring of c subunits, which function as a rotor, interacting with two b subunits at the periphery of the ring, the b subunits functioning as a stator, In this study, cysteines were introduced into the C-terminal region of subunit c and the N-terminal region of subunit b, Cys of N2C subunit b was cross-linked with Cys at positions 74, 75, and 78 of subunit c, In each case, a maximum of 50% of the b subunit could be cross-linked to subunit c, which suggests that either only one of the two b subunits lie adjacent to the c-ring or that both b subunits interact with a single subunit c, The results support a topological arrangement of these subunits, in which the respective Nand C-terminal ends of subunits b and c extend to the periplasmic surface of the membrane and cAsp-61 lies at the center of the membrane, The cross-linking of Cys between bN2C and cV78C was shown to inhibit ATP-driven proton pumping, as would be predicted from a rotary model for ATP synthase function, but unexpectedly, cross-linking did not lead to inhibition of ATPase activity. ATP hydrolysis and proton pumping are therefore uncoupled in the cross-linked enzyme. The c subunit lying adjacent to subunit b was shown to be mobile and to exchange with c subunits that initially occupied non-neighboring positions. The movement or exchange of subunits at the position adjacent to subunit b was blocked by dicyclohexylcarbodiimide. These experiments provide a biochemical verification that the oligomeric c-ring can move with respect to the b-stator and provide further support for a rotary catalytic mechanism in the ATP synthase.
引用
收藏
页码:31340 / 31346
页数:7
相关论文
共 72 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex - The gamma-epsilon subunits are essentially randomly distributed relative to the alpha(3)beta(3)delta domain in the intact complex [J].
Aggeler, R ;
Ogilvie, I ;
Capaldi, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (31) :19621-19624
[3]   F0 complex of the Escherichia coli ATP synthase -: Not all monomers of the subunit c oligomer are involved in F1 interaction [J].
Birkenhäger, R ;
Greie, JC ;
Altendorf, K ;
Deckers-Hebestreit, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 264 (02) :385-396
[4]  
BIRKENHAGER R, 1995, EUR J BIOCHEM, V230, P58, DOI 10.1111/j.1432-1033.1995.0058i.x
[5]   Visualization of a peripheral stalk in V-type ATPase: Evidence for the stator structure essential to rotational catalysis [J].
Boekema, EJ ;
Ubbink-Kok, T ;
Lolkema, JS ;
Brisson, A ;
Konings, WN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14291-14293
[6]   Direct indication for the existence of a double stalk in CF0F1 [J].
Böttcher, B ;
Schwarz, L ;
Gräber, P .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (05) :757-762
[7]   The ATP synthase - A splendid molecular machine [J].
Boyer, PD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :717-749
[8]   Rotation of the ε subunit during catalysis by Escherichia coli F0F1-ATP synthase [J].
Bulygin, VV ;
Duncan, TM ;
Cross, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :31765-31769
[9]   Energy transduction in the sodium F-ATPase of Propionigenium modestum [J].
Dimroth, P ;
Wang, HY ;
Grabe, M ;
Oster, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :4924-4929
[10]   Structure of the membrane domain of subunit b of the Escherichia coli F0F1 ATP synthase [J].
Dmitriev, O ;
Jones, PC ;
Jiang, WP ;
Fillingame, RH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (22) :15598-15604