Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion

被引:119
作者
Shi, Yixiang [1 ]
Cai, Ningsheng [1 ]
Li, Chen [1 ]
机构
[1] Tsinghua Univ, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
关键词
solid oxide fuel cell; anode-supported; surface diffusions; modeling;
D O I
10.1016/j.jpowsour.2006.10.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A two-dimensional isothermal mechanistic model of an anode-supported solid oxide fuel cell was developed based on button-cell geometry. The model coupled the intricate interdependency among the ionic conduction, electronic conduction, gas transport, and the electrochemical reaction processes. All forms of polarizations were included. The molecular diffusion, Knudsen diffusion, as well as the simplified competitive adsorption and surface diffusion were also considered. An electric analogue circuit was used to determine the effective hydrogen diffusivity. The model results showed good agreement with the published experimental data in different H-2-H2O mixtures without any other calibrations after the parameter estimation according to the experimental data in baseline operating condition. The distributions of species concentration and current density were predicted and the effects of cathode area, gas components, and anode thickness on the cell performance were (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:639 / 648
页数:10
相关论文
共 17 条
[1]   Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance [J].
Aguiar, P ;
Adjiman, CS ;
Brandon, NP .
JOURNAL OF POWER SOURCES, 2004, 138 (1-2) :120-136
[2]   Simplified processing of anode-supported thin film planar solid oxide fuel cells [J].
Basu, RN ;
Blass, G ;
Buchkremer, HP ;
Stöver, D ;
Tietz, F ;
Wessel, E ;
Vinke, IC .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (04) :463-471
[3]  
CASANOVA AC, 2001, PRECOMMERCIAL DEMONS
[4]   Cathode micromodel of solid oxide fuel cell [J].
Chan, SH ;
Chen, XJ ;
Khor, KA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A164-A172
[5]   Anode micro model of solid oxide fuel cell [J].
Chan, SH ;
Xia, ZT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A388-A394
[6]   Micro-modelling of solid oxide fuel cell electrodes [J].
Costamagna, P ;
Costa, P ;
Antonucci, V .
ELECTROCHIMICA ACTA, 1998, 43 (3-4) :375-394
[7]   Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance [J].
Fleig, J .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :361-382
[8]  
HIRSCHENHOFER JH, 2004, FELL CELL HDB
[9]   Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs [J].
Jiang, Y ;
Virkar, AV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) :A942-A951
[10]   Review article number 50 - The Maxwell-Stefan approach to mass transfer [J].
Krishna, R ;
Wesselingh, JA .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (06) :861-911