New insights into ADPKD molecular pathways using combination of SAGE and microarray technologies

被引:42
作者
Husson, H
Manavalan, P
Akmaeva, VR
Russo, RJ
Cook, B
Richards, B
Barberio, D
Liu, DY
Cao, XH
Landes, GM
Wang, CJ
Roberts, BL
Klinger, KW
Grubman, SA
Jefferson, DM
Ibraghimov-Beskrovnaya, O
机构
[1] Genzyme Corp, Funct Genom, Framingham, MA 01701 USA
[2] Tufts Univ, Sch Med, Dept Physiol, Boston, MA 02111 USA
关键词
autosomal-dominant polycystic kidney disease; polycystin; PKD1; PKD2; SAGE; microarray; gene expression profiling; RT-PCR;
D O I
10.1016/j.ygeno.2004.03.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene, but cellular mechanisms of cystogenesis remain unclear. In an attempt to display the array of cyst-specific molecules and to elucidate the disease pathway, we have performed comprehensive high-throughput expression analysis of normal and ADPKD epithelia in a two-step fashion. First, we generated expression profiles of normal and cystic epithelia derived from kidney and liver using serial analysis of gene expression (SAGE). We found 472 and 499 differentially expressed genes with fivefold difference in liver and kidney libraries, respectively. These genes encode growth factors, transcription factors, proteases, apoptotic factors, molecules involved in cell-extracellular matrix interactions, and ion channels. As a second step, we constructed a custom cDNA microarray using a subset of the differentially regulated genes identified by SAGE and interrogated ADPKD patient samples. Subsequently, a set of differentially expressed genes was refined to 26 up-regulated and 48 downregulated genes with a p value of <0.01. This study may provide valuable insights into the pathophysiology of ADPKD and suggest potential therapeutic targets. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:497 / 510
页数:14
相关论文
共 79 条
[71]   Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects [J].
Tseng, GC ;
Oh, MK ;
Rohlin, L ;
Liao, JC ;
Wong, WH .
NUCLEIC ACIDS RESEARCH, 2001, 29 (12) :2549-2557
[72]   SERIAL ANALYSIS OF GENE-EXPRESSION [J].
VELCULESCU, VE ;
ZHANG, L ;
VOGELSTEIN, B ;
KINZLER, KW .
SCIENCE, 1995, 270 (5235) :484-487
[73]  
WELLING LW, 1996, RENAL PATHOLOGY, P1828
[74]  
Wilson PD, 1999, LAB INVEST, V79, P1311
[75]   Epithelial cell polarity and disease [J].
Wilson, PD .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1997, 272 (04) :F434-F442
[76]  
WILSON PD, 1993, EUR J CELL BIOL, V61, P131
[77]   Design issues for cDNA microarray experiments [J].
Yang, YH ;
Speed, T .
NATURE REVIEWS GENETICS, 2002, 3 (08) :579-588
[78]  
YE M, 1992, J AM SOC NEPHROL, V3, P984
[79]   Gene expression profiles in normal and cancer cells [J].
Zhang, L ;
Zhou, W ;
Velculescu, VE ;
Kern, SE ;
Hruban, RH ;
Hamilton, SR ;
Vogelstein, B ;
Kinzler, KW .
SCIENCE, 1997, 276 (5316) :1268-1272