System-level identification of transcriptional circuits underlying mammalian circadian clocks

被引:648
作者
Ueda, HR
Hayashi, S
Chen, WB
Sano, M
Machida, M
Shigeyoshi, Y
Iino, M
Hashimoto, S
机构
[1] Yamanouchi Pharmaceut Co Ltd, Inst Drug Discovery Res, Mol Med Labs, Tsukuba, Ibaraki 3058585, Japan
[2] RIKEN, Ctr Dev Biol, Lab Syst Biol, Chuo Ku, Kobe, Hyogo 6500047, Japan
[3] Univ Tokyo, Grad Sch Med, Dept Pharmacol, Tokyo 1130033, Japan
[4] Natl Inst Adv Ind Sci & technol, Res Ctr Glycosci, Tsukuba, Ibaraki 3058566, Japan
[5] Kinki Univ, Sch Med, Dept Anat & Neurobiol, Osakasayama, Osaka 5898511, Japan
关键词
D O I
10.1038/ng1504
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mammalian circadian clocks consist of complexly integrated regulatory loops(1-5), making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits(6). Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements(7) and RevErbA/ROR binding elements(8) in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 30 条
[1]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[2]   Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock [J].
Bae, K ;
Jin, XW ;
Maywood, ES ;
Hastings, MH ;
Reppert, SM ;
Weaver, DR .
NEURON, 2001, 30 (02) :525-536
[3]   Mop3 is an essential component of the master circadian pacemaker in mammals [J].
Bunger, MK ;
Wilsbacher, LD ;
Moran, SM ;
Clendenin, C ;
Radcliffe, LA ;
Hogenesch, JB ;
Simon, MC ;
Takahashi, JS ;
Bradfield, CA .
CELL, 2000, 103 (07) :1009-1017
[4]  
Falvey E, 1996, BIOL CHEM, V377, P797
[5]   Role of the CLOCK protein in the mammalian circadian mechanism [J].
Gekakis, N ;
Staknis, D ;
Nguyen, HB ;
Davis, FC ;
Wilsbacher, LD ;
King, DP ;
Takahashi, JS ;
Weitz, CJ .
SCIENCE, 1998, 280 (5369) :1564-1569
[6]   THE ORPHAN RECEPTOR REV-ERBA-ALPHA ACTIVATES TRANSCRIPTION VIA A NOVEL RESPONSE ELEMENT [J].
HARDING, HP ;
LAZAR, MA .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (05) :3113-3121
[7]   Dec1 and Dec2 are regulators of the mammalian molecular clock [J].
Honma, S ;
Kawamoto, T ;
Takagi, Y ;
Fujimoto, K ;
Sato, F ;
Noshiro, M ;
Kato, Y ;
Honma, K .
NATURE, 2002, 419 (6909) :841-+
[8]   Circadian oscillation of BMAL1, a partner of a mammalian clock gene clock, in rat suprachiasmatic nucleus [J].
Honma, S ;
Ikeda, M ;
Abe, H ;
Tanahashi, Y ;
Namihira, M ;
Honma, K ;
Nomura, M .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 250 (01) :83-87
[9]   Lethality and centrality in protein networks [J].
Jeong, H ;
Mason, SP ;
Barabási, AL ;
Oltvai, ZN .
NATURE, 2001, 411 (6833) :41-42
[10]   Positional cloning of the mouse circadian Clock gene [J].
King, DP ;
Zhao, YL ;
Sangoram, AM ;
Wilsbacher, LD ;
Tanaka, M ;
Antoch, MP ;
Steeves, TDL ;
Vitaterna, MH ;
Kornhauser, JM ;
Lowrey, PL ;
Turek, FW ;
Takahashi, JS .
CELL, 1997, 89 (04) :641-653