Absorbent tuples of aggregation operators

被引:4
作者
Behakov, G.
Calvo, T.
Pradera, A.
机构
[1] Deakin Univ, Sch Informat Technol & Engn, Burwood 3125, Australia
[2] Univ Alcala de Henares, Dept Ciencias Computac, Madrid 28871, Spain
[3] Univ Rey Juan Carlos, Dept Ciencias Computac, Madrid 28933, Spain
关键词
aggregation operators; absorbent element; absorbent tuple; null set;
D O I
10.1016/j.fss.2007.03.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We generalize the notion of an absorbent element of aggregation operators. Our construction involves tuples of values that decide the result of aggregation. Absorbent tuples are useful to model situations in which certain decision makers may decide the outcome irrespective of the opinion of the others. We examine the most important classes of aggregation operators in respect to their absorbent tuples, and also construct new aggregation operators with predefined sets of absorbent tuples. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1675 / 1691
页数:17
相关论文
共 17 条
[1]  
ACZEL J, 1948, B AMER MATH SOC, V54
[2]   Monotonicity preserving approximation of multivariate scattered data [J].
Beliakov, G .
BIT NUMERICAL MATHEMATICS, 2005, 45 (04) :653-677
[3]   Cutting angle method - A tool for constrained global optimization [J].
Beliakov, G .
OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (02) :137-151
[4]   Geometry and combinatorics of the cutting angle method [J].
Beliakov, G .
OPTIMIZATION, 2003, 52 (4-5) :379-394
[5]  
BELIAKOV G, 2007, IN PRESS INT J UNCER
[6]  
BELIAKOV G, 2005, EUSFLAT 2005, P937
[7]   Interpolation of Lipschitz functions [J].
Beliakov, Gleb .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) :20-44
[8]  
Calvo T, 2002, STUD FUZZ SOFT COMP, V97, P3
[9]   The functional equations of Frank and Alsina for uninorms and nullnorms [J].
Calvo, T ;
De Baets, B ;
Fodor, J .
FUZZY SETS AND SYSTEMS, 2001, 120 (03) :385-394
[10]  
Cranor L.F., 1996, THESIS WASHINGTON U