Interpolation of Lipschitz functions

被引:46
作者
Beliakov, Gleb [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Burwood, NSW 3125, Australia
关键词
scattered data interpolation; Lipschitz approximation; optimal interpolation; central algorithm; multivariate approximation;
D O I
10.1016/j.cam.2005.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning off. This paper develops a computationally efficient algorithm for evaluating the interpolant in the multivariate case. We compare the proposed method with the radial basis functions and natural neighbor interpolation, provide the details of the algorithm and illustrate it on numerical experiments. The efficiency of this method surpasses alternative interpolation methods for scattered data. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 44
页数:25
相关论文
共 46 条
[1]  
ALFELD P, 1989, INT S NUM M, V90, P1
[2]  
[Anonymous], 1991, ACM Computing Surveys
[3]  
[Anonymous], 2000, APPROXIMATION THEORY
[4]  
Bakhvalov N.S., 1971, USSR Comput. Math. Math. Phys., V11, P244, DOI 10.1016/0041-5553(71)90017-6
[5]   Fast algorithm for the cutting angle method of global optimization [J].
Batten, LM ;
Beliakov, G .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (02) :149-161
[6]   How to build aggregation operators from data [J].
Beliakov, G .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2003, 18 (08) :903-923
[7]   Geometry and combinatorics of the cutting angle method [J].
Beliakov, G .
OPTIMIZATION, 2003, 52 (4-5) :379-394
[8]  
BELIAKOV G, 2005, IN PRESS OPTIMIZATIO
[9]  
Belikov VV., 1997, Computational Mathematics and Mathematical Physics, V37, P9
[10]   Voronoi diagrams in higher dimensions under certain polyhedral distance functions [J].
Boissonnat, JD ;
Sharir, M ;
Tagansky, B ;
Yvinec, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (04) :485-519