Local search for the minimum label spanning tree problem with bounded color classes

被引:45
作者
Brüggemann, T
Monnot, J
Woeginger, GJ
机构
[1] Univ Twente, Dept Math, NL-7500 AE Enschede, Netherlands
[2] Univ Paris 09, CNRS, LAMSADE, UMR 7024, Paris, France
关键词
graph algorithms; approximation algorithms; combinatorial optimization; local search; complexity; APX-completeness;
D O I
10.1016/S0167-6377(02)00241-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the Minimum Label Spanning Tree problem, the input consists of an edge-colored undirected graph, and the goal is to find a spanning tree with the minimum number of different colors. We investigate the special case where every color appears at most r times in the input graph. This special case is polynomially solvable for r = 2, and NP- and APX-complete for any fixed r greater than or equal to 3. We analyze local search algorithms that are allowed to switch up to k of the colors used in a feasible solution. We show that for k = 2 any local optimum yields an (r + 1)/2-approximation of the global optimum, and that this bound is tight. For every k greater than or equal to 3, there exist instances for which some local optima are a factor of r/2 away from the global optimum. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 16 条
[1]   Some APX-completeness results for cubic graphs [J].
Alimonti, P ;
Kann, V .
THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) :123-134
[2]  
[Anonymous], 1989, SIAM J DISCRETE MATH, DOI DOI 10.1137/0402008
[3]   On local search for weighted k-set packing [J].
Arkin, EM ;
Hassin, R .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (03) :640-648
[4]   LOCAL SEARCH, REDUCIBILITY AND APPROXIMABILITY OF NP-OPTIMIZATION PROBLEMS [J].
AUSIELLO, G ;
PROTASI, M .
INFORMATION PROCESSING LETTERS, 1995, 54 (02) :73-79
[5]   The minimum labeling spanning trees [J].
Chang, RS ;
Leu, SJ .
INFORMATION PROCESSING LETTERS, 1997, 63 (05) :277-282
[6]  
Erdos P., 1963, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, V12, P251
[7]  
Finn G., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P312, DOI 10.1007/BF01930985
[8]  
GABOW HN, 1985, LECT NOTES COMPUT SC, V194, P210
[9]   On the minimum label spanning tree problem [J].
Krumke, SO ;
Wirth, HC .
INFORMATION PROCESSING LETTERS, 1998, 66 (02) :81-85
[10]  
Lu H, 1992, P 30 ANN ALL C COMM, P533