The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast

被引:196
作者
Lee, WL [1 ]
Oberle, JR [1 ]
Cooper, JA [1 ]
机构
[1] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
关键词
Pac1; dynein; Num1; microtubule; nuclear migration;
D O I
10.1083/jcb.200209022
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During mitosis in Saccharomyces cerevisiae, the mitotic spindle moves into the mother-bud neck via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. Here we show that Pac1, the yeast homologue of the human lissencephaly protein LIS1, plays a key role in this process. First, genetic interactions placed Pac1 in the dynein/dynactin pathway. Second, cells lacking Pac1 failed to display microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Third, Pac1 localized to the plus ends (distal tips) of cytoplasmic microtubules in the bud. This localization did not depend on the dynein heavy chain Dyn1. Moreover, the Pac1 fluorescence intensity at the microtubule end was enhanced in cells lacking dynactin or the cortical attachment molecule Num1. Fourth, dynein heavy chain Dyn1 also localized to the tips of cytoplasmic microtubules in wild-type cells. Dynein localization required Pac1 and, like Pac1, was enhanced in cells lacking the dynactin component Arp1 or the cortical attachment molecule Num1. Our results suggest that Pac1 targets dynein to microtubule tips, which is necessary for sliding of microtubules along the bud cortex. Dynein must remain inactive until microtubule ends interact with the bud cortex, at which time dynein and Pac1 appear to be offloaded from the microtubule to the cortex.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 37 条
[1]   Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae [J].
Adames, NR ;
Cooper, JA .
JOURNAL OF CELL BIOLOGY, 2000, 149 (04) :863-874
[2]   Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites [J].
Amberg, DC ;
Zahner, JE ;
Mulholland, JW ;
Pringle, JR ;
Botstein, D .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (04) :729-753
[3]  
[Anonymous], 1994, METHODS YEAST GENETI
[4]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[5]   The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast [J].
Beach, DL ;
Thibodeaux, J ;
Maddox, P ;
Yeh, E ;
Bloom, K .
CURRENT BIOLOGY, 2000, 10 (23) :1497-1506
[6]   Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex [J].
Carminati, JL ;
Stearns, T .
JOURNAL OF CELL BIOLOGY, 1997, 138 (03) :629-641
[7]   LIS1, CLIP-170's key to the dynein/dynactin pathway [J].
Coquelle, FM ;
Caspi, M ;
Cordelières, FP ;
Dompierre, JP ;
Dujardin, DL ;
Koifman, C ;
Martin, P ;
Hoogenraad, CC ;
Akhmanova, A ;
Galjart, N ;
De Mey, JR ;
Reiner, O .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (09) :3089-3102
[8]   Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins [J].
Cottingham, FR ;
Hoyt, MA .
JOURNAL OF CELL BIOLOGY, 1997, 138 (05) :1041-1053
[9]   Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration [J].
DeZwaan, TM ;
Ellingson, E ;
Pellman, D ;
Roof, DM .
JOURNAL OF CELL BIOLOGY, 1997, 138 (05) :1023-1040
[10]   CYTOPLASMIC DYNEIN IS REQUIRED FOR NORMAL NUCLEAR SEGREGATION IN YEAST [J].
ESHEL, D ;
URRESTARAZU, LA ;
VISSERS, S ;
JAUNIAUX, JC ;
VANVLIETREEDIJK, JC ;
PLANTA, RJ ;
GIBBONS, IR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11172-11176