Semiempirical QM/MM potential with simple valence bond (SVB) for enzyme reactions. Application to the nucleophilic addition reaction in haloalkane dehalogenase

被引:32
作者
Devi-Kesavan, LS
Garcia-Viloca, M
Gao, J
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA
关键词
simple valence bond; combined QM/MM; haloalkane dehalogenase;
D O I
10.1007/s00214-002-0419-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a method for the correction of errors in combined QM/MM calculations using a semiempirical Hamiltonian for enzyme reactions. Since semiempirical models can provide a reasonable representation of the general shape of the potential energy surface for chemical reactions, we introduce a simple valence bond-like (SVB) term to correct the energies at critical points on the potential energy surface. The present SVB term is not a stand-alone potential energy function, but it is used purely for introducing small energy corrections to the semiempirical Hamiltonian to achieve the accuracy needed for modeling enzymatic reactions. We show that the present coupled QM-SVB/ MM approach can be parameterized to reproduce experimental and ab initio results for model reactions, and have applied the PM3-SVB/MM potential to the nucleophilic addition reaction in haloalkane dehalogenase. In a preliminary energy minimization study, the PM3SVB/MM results are reasonable, suggesting that it may be used in free energy simulations to assess enzymatic reaction mechanism.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 39 条
[1]  
ALHAMBRA C, 1998, ACS SYM SER, V712, P35
[2]   The generalized hybrid orbital method for combined quantum mechanical/molecular mechanical calculations: formulation and tests of the analytical derivatives [J].
Amara, P ;
Field, MJ ;
Alhambra, C ;
Gao, JL .
THEORETICAL CHEMISTRY ACCOUNTS, 2000, 104 (05) :336-343
[3]  
AMARA P, 1999, THEORET COMPUT CHEM, V8, P1
[4]   SIMULATION OF ENZYME-REACTIONS USING VALENCE-BOND FORCE-FIELDS AND OTHER HYBRID QUANTUM-CLASSICAL APPROACHES [J].
AQVIST, J ;
WARSHEL, A .
CHEMICAL REVIEWS, 1993, 93 (07) :2523-2544
[5]   Progress toward chemical accuracy in the computer simulation of condensed phase reactions [J].
Bash, PA ;
Ho, LL ;
MacKerell, AD ;
Levine, D ;
Hallstrom, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3698-3703
[6]   HIV-1 protease cleavage mechanism: A theoretical investigation based on classical MD simulation and reaction path calculations using a hybrid QM/MM potential [J].
Chatfield, DC ;
Eurenius, KP ;
Brooks, BR .
THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE, 1998, 423 (1-2) :79-92
[7]   Simulation of the enzyme reaction mechanism of malate dehydrogenase [J].
Cunningham, MA ;
Ho, LL ;
Nguyen, DT ;
Gillilan, RE ;
Bash, PA .
BIOCHEMISTRY, 1997, 36 (16) :4800-4816
[8]   STRUCTURE OF THE TRIOSEPHOSPHATE ISOMERASE PHOSPHOGLYCOLOHYDROXAMATE COMPLEX - AN ANALOG OF THE INTERMEDIATE ON THE REACTION PATHWAY [J].
DAVENPORT, RC ;
BASH, PA ;
SEATON, BA ;
KARPLUS, M ;
PETSKO, GA ;
RINGE, D .
BIOCHEMISTRY, 1991, 30 (24) :5821-5826
[9]  
DEVIKESAVAN LS, 2003, J AM CHEM SOC ASAP
[10]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909