A finite element method for surface diffusion:: the parametric case

被引:95
作者
Bänsch, E
Morin, P [1 ]
Nochetto, RH
机构
[1] Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina
[2] Univ Nacl Litoral, Fac Ingn Quim, Dept Matemat, RA-3000 Guemes, Santa Fe, Argentina
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[4] Free Univ Berlin, D-1000 Berlin, Germany
[5] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[6] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
surface diffusion; fourth-order parabolic problem; finite elements; Schur complement; smoothing effect; pinch-off;
D O I
10.1016/j.jcp.2004.08.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Surface diffusion is a (fourth order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for parametric surfaces with or without boundaries. The method is semi-implicit, requires no explicit parametrization, and yields a linear system of elliptic PDE to solve at each time step. We next develop a finite element method, propose a Schur complement approach to solve the resulting linear systems, and show several significant simulations, some with pinch-off in finite time. We introduce a mesh regularization algorithm, which helps prevent mesh distortion, and discuss the use of time and space adaptivity to increase accuracy while reducing complexity. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:321 / 343
页数:23
相关论文
共 26 条
[1]  
[Anonymous], 2001, HOKKAIDO MATH J
[2]   INTERFACE MORPHOLOGY DEVELOPMENT DURING STRESS-CORROSION CRACKING .1. VIA SURFACE DIFFUSION [J].
ASARO, RJ ;
TILLER, WA .
METALLURGICAL TRANSACTIONS, 1972, 3 (07) :1789-&
[3]  
Bänsch E, 2001, NUMER MATH, V88, P203, DOI 10.1007/s002110000225
[4]  
Bänsch E, 2004, INT S NUM M, V147, P53
[5]   Finite element method for epitaxial growth with attachment-detachment kinetics [J].
Bänsch, E ;
Hausser, F ;
Lakkis, O ;
Li, B ;
Voigt, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) :409-434
[6]   Surface diffusion of graphs:: Variational formulation, error analysis, and simulation [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :773-799
[7]  
BANSCH E, FINITE ELEMENT METHO
[8]   Axisymmetric surface diffusion: Dynamics and stability of self-similar pinchoff [J].
Bernoff, AJ ;
Bertozzi, AL ;
Witelski, TP .
JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) :725-776
[9]  
Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[10]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063