Tumor-host immune interactions and dendritic cell dysfunction

被引:177
作者
Yang, L [1 ]
Carbone, DP [1 ]
机构
[1] Vanderbilt Univ, Dept Canc Biol, Sch Med, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
来源
ADVANCES IN CANCER RESEARCH, VOL 92 | 2004年 / 92卷
关键词
D O I
10.1016/S0065-230X(04)92002-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Several lines of evidence from recent years support the existence of cancer immunosurveillance, especially studies of natural killer (NK) cells and the IFN-gamma pathway. However, immune suppression is clearly observed in cancer patients and tumor-bearing animals as well. The fact is that although cancers often elicit a vigorous immune response during the early part of their growth, the immune response is soon down-regulated, permitting progressive tumor growth. Apparently, the intrinsic plasticity of tumors allows the immune system to sculpt the immunogenic phenotypes of tumors to escape efficient immune destruction. But most evidently, several mechanisms have now been found to contribute to the failure of immune control of tumor growth. Tumor cells have a very low level of MHC class II, costimulatory molecules, and weak antigens. They also produce immune suppressive factors (VEGF, IL-10, PGE(2)) that exert systemic effects on immune cell function. In particular, disabled dendritic cell differentiation, maturation, migration, and function are fundamental to this defect, as they are the most potent antigen-presenting cells (APCs) of the immune system, interacting with T and B lymphocyte as well as NK cells to induce and modulate immune responses. In addition, tumors also alter host hematopoiesis and produce large numbers of immature dendritic cells, and evidence shows that these cells are directly immune suppressive. Harnessing the immune system for effective cancer therapy has remained a great challenge. DC-based vaccines, or DC-based vaccines in combination with treatments designed to improve the host immune environment, may offer hope for more effective cancer immunotherapy. Tumor-host interactions are an important determinant of tumor behavior and response to therapy. How tumors interact with their hosts is thus a very broad and complex topic. In this chapter, we will focus on tumor-host immune interactions and the roles of dendritic cell dysfunction in tumor avoidance of host immune responses. We will survey recent findings regarding tumor immune surveillance, antitumor host immune responses, and how the immune system also functions to promote or select tumor variants with reduced immunogenicity. We will then discuss immune suppression caused by tumors, which is clearly observed in tumor-bearing animals and cancer patients. Finally, we will discuss altered dendritic cell function and differentiation in some detail, as it is likely to be one of the most fundamental mechanisms by which tumors escape immune responses. (c) 2004 Elsevier Inc.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 76 条
[1]   Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer [J].
Almand, B ;
Clark, JI ;
Nikitina, E ;
van Beynen, J ;
English, NR ;
Knight, SC ;
Carbone, DP ;
Gabrilovich, DI .
JOURNAL OF IMMUNOLOGY, 2001, 166 (01) :678-689
[2]   Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor [J].
Baxevanis, CN ;
Voutsas, IF ;
Tsitsilonis, OE ;
Gritzapis, AD ;
Sotiriadou, R ;
Papamichail, M .
JOURNAL OF IMMUNOLOGY, 2000, 164 (07) :3902-3912
[3]   Tumor-induced immune dysfunctions caused by myeloid suppressor cells [J].
Bronte, V ;
Serafini, P ;
Apolloni, E ;
Zanovello, P .
JOURNAL OF IMMUNOTHERAPY, 2001, 24 (06) :431-446
[4]   Cross-presentation: A general mechanism for CTL immunity and tolerance [J].
Carbone, FR ;
Kurts, C ;
Bennett, SRM ;
Miller, JFAP ;
Heath, WR .
IMMUNOLOGY TODAY, 1998, 19 (08) :368-373
[5]  
Cheng XF, 1998, J IMMUNOL, V160, P2735
[6]  
Costello Regis T., 1999, Archivum Immunologiae et Therapiae Experimentalis, V47, P83
[7]   The immunophenotype of minimally differentiated acute myeloid leukemia (AML-M0):: reduced immunogenicity and high frequency of CD34+/CD38- leukemic progenitors [J].
Costello, RT ;
Mallet, F ;
Chambost, H ;
Sainty, D ;
Arnoulet, C ;
Gastaut, JA ;
Olive, D .
LEUKEMIA, 1999, 13 (10) :1513-1518
[8]   Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity [J].
Curiel, TJ ;
Wei, S ;
Dong, HD ;
Alvarez, X ;
Cheng, P ;
Mottram, P ;
Krzysiek, R ;
Knutson, KL ;
Daniel, B ;
Zimmermann, MC ;
David, O ;
Burow, M ;
Gordon, A ;
Dhurandhar, N ;
Myers, L ;
Berggren, R ;
Hemminki, A ;
Alvarez, RD ;
Emilie, D ;
Curiel, DT ;
Chen, LP ;
Zou, WP .
NATURE MEDICINE, 2003, 9 (05) :562-567
[9]   ENHANCED IN-VIVO GROWTH AND RESISTANCE TO REJECTION OF TUMOR-CELLS EXPRESSING DOMINANT-NEGATIVE IFN-GAMMA RECEPTORS [J].
DIGHE, AS ;
RICHARDS, E ;
OLD, LJ ;
SCHREIBER, RD .
IMMUNITY, 1994, 1 (06) :447-456
[10]   Cancer immunoediting: from immunosurveillance to tumor escape [J].
Dunn, GP ;
Bruce, AT ;
Ikeda, H ;
Old, LJ ;
Schreiber, RD .
NATURE IMMUNOLOGY, 2002, 3 (11) :991-998