Improved of cathode performance of LiFePO4/C composite using different carboxylic acids as carbon sources for lithium-ion batteries

被引:28
作者
Goktepe, Huseyin [1 ]
Sahan, Halil [1 ]
Kilic, Fatma [1 ]
Patat, Saban [1 ]
机构
[1] Erciyes Univ, Dept Chem, Fac Art & Sci, TR-38039 Kayseri, Turkey
关键词
Lithium batteries; LiFePO4; Cathode materials; Carboxylic acid; Electrochemical properties; STABILITY;
D O I
10.1007/s11581-009-0382-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Among the several materials under development for use as a cathodes in lithium-ion batteries olivine-type LiFePO4 is one of the most promising cathode material. However, its poor conductivity and low lithium-ion diffusion limits its practical application. In this study, we report seven different carboxylic acids used to synthesize LiFePO4/C composite, and influences of carbon sources on electrochemical performance were intensively studied. The structure and electrochemical properties of the LiFePO4/C were characterized by X-ray diffraction, scanning electron microscopy, electrical conductivity, and galvanostatic charge-discharge measurements. Among the materials studied, the sample E with tartaric acid as carbon source exhibited the best cell performance with a maximum discharge capacity of 160 mAh g(-1) at a 0.1 C-rate. The improved electrochemical properties were attributed to the reduced particle size and enhanced electrical contacts by carbon.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 23 条
[1]   Thermal stability of LiFePO4-based cathodes [J].
Andersson, AS ;
Thomas, JO ;
Kalska, B ;
Häggström, L .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (02) :66-68
[2]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[3]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[4]  
Armarego W.L. F., 2002, Purification of Laboratory Chemicals, V4th
[5]  
BRODD RJ, 2004, J ELECTROCHEM SOC K, V1, P151
[6]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[7]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[8]   Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A607-A610
[9]   Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
JOURNAL OF POWER SOURCES, 2003, 119 :252-257
[10]  
GEORGE TKF, 2008, J SOLID STATE ELECTR, V12, P825, DOI DOI 10.1007/S10008-008-0516-4