Sampling the arabidopsis transcriptome with massively parallel pyrosequencing

被引:237
作者
Weber, Andreas P. M.
Weber, Katrin L.
Carr, Kevin
Wilkerson, Curtis
Ohlrogge, John B. [1 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Bioinformat Support Core, Res Technol Support Facil, E Lansing, MI 48824 USA
关键词
D O I
10.1104/pp.107.096677
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Massively parallel sequencing of DNA by pyrosequencing technology offers much higher throughput and lower cost than conventional Sanger sequencing. Although extensively used already for sequencing of genomes, relatively few applications of massively parallel pyrosequencing to transcriptome analysis have been reported. To test the ability of this technology to provide unbiased representation of transcripts, we analyzed mRNA from Arabidopsis ( Arabidopsis thaliana) seedlings. Two sequencing runs yielded 541,852 expressed sequence tags (ESTs) after quality control. Mapping of the ESTs to the Arabidopsis genome and to The Arabidopsis Information Resource 7.0 cDNA models indicated: (1) massively parallel pyrosequencing detected transcription of 17,449 gene loci providing very deep coverage of the transcriptome. Performing a second sequencing run only increased the number of genes identified by 10%, but increased the overall sequence coverage by 50%. (2) Mapping of the ESTs to their predicted full-length transcripts indicated that all regions of the transcript were well represented regardless of transcript length or expression level. Furthermore, short, medium, and long transcripts were equally represented. ( 3) Over 16,000 of the ESTs that mapped to the genome were not represented in the existing dbEST database. In some cases, the ESTs provide the first experimental evidence for transcripts derived from predicted genes, and, for at least 60 locations in the genome, pyrosequencing identified likely protein-coding sequences that are not now annotated as genes. Together, the results indicate massively parallel pyrosequencing provides novel information helpful to improve the annotation of the Arabidopsis genome. Furthermore, the unbiased representation of transcripts will be particularly useful for gene discovery and gene expression analysis of nonmodel plants with less complete genomic information.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 34 条
[11]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P159
[12]   Gene discovery and annotation using LCM-454 transcriptome sequencing [J].
Emrich, Scott J. ;
Barbazuk, W. Brad ;
Li, Li ;
Schnable, Patrick S. .
GENOME RESEARCH, 2007, 17 (01) :69-73
[13]   Technical aspects of functional proteomics in plants [J].
Hirano, H ;
Islam, N ;
Kawasaki, H .
PHYTOCHEMISTRY, 2004, 65 (11) :1487-1498
[14]   CAP3: A DNA sequence assembly program [J].
Huang, XQ ;
Madan, A .
GENOME RESEARCH, 1999, 9 (09) :868-877
[15]  
Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202. Article published online before March 2002, 10.1101/gr.229202]
[16]   The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics [J].
Lease, Kevin A. ;
Walker, John C. .
PLANT PHYSIOLOGY, 2006, 142 (03) :831-838
[17]   IMPROVED METHOD FOR THE ISOLATION OF RNA FROM PLANT-TISSUES [J].
LOGEMANN, J ;
SCHELL, J ;
WILLMITZER, L .
ANALYTICAL BIOCHEMISTRY, 1987, 163 (01) :16-20
[18]   Genome sequencing in microfabricated high-density picolitre reactors [J].
Margulies, M ;
Egholm, M ;
Altman, WE ;
Attiya, S ;
Bader, JS ;
Bemben, LA ;
Berka, J ;
Braverman, MS ;
Chen, YJ ;
Chen, ZT ;
Dewell, SB ;
Du, L ;
Fierro, JM ;
Gomes, XV ;
Godwin, BC ;
He, W ;
Helgesen, S ;
Ho, CH ;
Irzyk, GP ;
Jando, SC ;
Alenquer, MLI ;
Jarvie, TP ;
Jirage, KB ;
Kim, JB ;
Knight, JR ;
Lanza, JR ;
Leamon, JH ;
Lefkowitz, SM ;
Lei, M ;
Li, J ;
Lohman, KL ;
Lu, H ;
Makhijani, VB ;
McDade, KE ;
McKenna, MP ;
Myers, EW ;
Nickerson, E ;
Nobile, JR ;
Plant, R ;
Puc, BP ;
Ronan, MT ;
Roth, GT ;
Sarkis, GJ ;
Simons, JF ;
Simpson, JW ;
Srinivasan, M ;
Tartaro, KR ;
Tomasz, A ;
Vogt, KA ;
Volkmer, GA .
NATURE, 2005, 437 (7057) :376-380
[19]   Phylogenetic relationships within cation transporter families of Arabidopsis [J].
Mäser, P ;
Thomine, S ;
Schroeder, JI ;
Ward, JM ;
Hirschi, K ;
Sze, H ;
Talke, IN ;
Amtmann, A ;
Maathuis, FJM ;
Sanders, D ;
Harper, JF ;
Tchieu, J ;
Gribskov, M ;
Persans, MW ;
Salt, DE ;
Kim, SA ;
Guerinot, ML .
PLANT PHYSIOLOGY, 2001, 126 (04) :1646-1667
[20]   Linking enzyme sequence to function using conserved property difference locator to identify and annotate positions likely to control specific functionality [J].
Mayer, KM ;
McCorkle, SR ;
Shanklin, J .
BMC BIOINFORMATICS, 2005, 6 (1)