Tuning the energy bandgap of CdSe nanocrystals via Mg doping

被引:40
作者
Kwak, Woo-Chul
Kim, Tae Geun
Chae, Won-Seok
Sung, Yun-Mo [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Univ, Dept Elect Engn, Seoul 136713, South Korea
[3] Daejin Univ, Dept Chem, Pochun Si 487711, Kyunggi Do, South Korea
关键词
D O I
10.1088/0957-4484/18/20/205702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
CdSe nanocrystals with a zinc blende structure allowed apparent Mg doping (similar to 9.8 at. %). Inverse micelles were formed at a low temperature as templates for the zinc blende CdSe nanocrystals, and paraffin oil and oleic acid were used as a solvent and a surfactant, respectively. The Mg doping was shown by energy dispersive x-ray spectroscopy ( EDS) and inductively coupled plasma ( ICP) atomic emission analyses. Although the particle size of the CdSe and Mg-doped CdSe nanocrystals were similar to 6 and similar to 8 nm, respectively, the Mg-doped ones show the obvious blueshift in the UV-visible absorption spectra due to the increase in the bulk energy bandgap, which is decisive evidence for the real Mg doping in the CdSe lattices. The Mg-doped CdSe nanocrystals also showed the blueshift in the photoluminescence ( PL) spectra, and their PL intensity was comparable to or even higher than that of the undoped CdSe. This impurity doping using the zinc blende structure is suggested as a simple and effective way to tune the energy bandgap of CdSe nanocrystals and, in turn, to control their light emission colour.
引用
收藏
页数:4
相关论文
共 24 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[5]   A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis [J].
Deng, ZT ;
Cao, L ;
Tang, FQ ;
Zou, BS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35) :16671-16675
[6]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[7]   Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J].
Han, MY ;
Gao, XH ;
Su, JZ ;
Nie, S .
NATURE BIOTECHNOLOGY, 2001, 19 (07) :631-635
[8]   Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J].
Jun, Young-wook ;
Choi, Jin-sil ;
Cheon, Jinwoo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (21) :3414-3439
[9]   Optical gain and stimulated emission in nanocrystal quantum dots [J].
Klimov, VI ;
Mikhailovsky, AA ;
Xu, S ;
Malko, A ;
Hollingsworth, JA ;
Leatherdale, CA ;
Eisler, HJ ;
Bawendi, MG .
SCIENCE, 2000, 290 (5490) :314-317
[10]   Lattice distortion and luminescence of CdSe/ZnSe nanocrystals [J].
Lee, Yong-Ji ;
Kim, Tae-Geun ;
Sung, Yun-Mo .
NANOTECHNOLOGY, 2006, 17 (14) :3539-3542