Supersymmetric fluid mechanics

被引:68
作者
Jackiw, R [1 ]
Polychronakos, AP
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Uppsala Univ, Inst Theoret Phys, S-75108 Uppsala, Sweden
[3] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece
关键词
D O I
10.1103/PhysRevD.62.085019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 14 条
[1]  
[Anonymous], UNPUB
[2]   Nonlinear realization of a dynamical poincare symmetry by a field-dependent diffeomorphism [J].
Bazeia, D ;
Jackiw, R .
ANNALS OF PHYSICS, 1998, 270 (01) :246-259
[3]   THE DYNAMICS OF RELATIVISTIC MEMBRANES .2. NONLINEAR-WAVES AND COVARIANTLY REDUCED MEMBRANE EQUATIONS [J].
BORDEMANN, M ;
HOPPE, J .
PHYSICS LETTERS B, 1994, 325 (3-4) :359-365
[4]   THE DYNAMICS OF RELATIVISTIC MEMBRANES - REDUCTION TO 2-DIMENSIONAL FLUID-DYNAMICS [J].
BORDEMANN, M ;
HOPPE, J .
PHYSICS LETTERS B, 1993, 317 (03) :315-320
[5]   ON THE QUANTUM-MECHANICS OF SUPERMEMBRANES [J].
DEWIT, B ;
HOPPE, J ;
NICOLAI, H .
NUCLEAR PHYSICS B, 1988, 305 (04) :545-581
[6]   SOME CLASSICAL-SOLUTIONS OF RELATIVISTIC MEMBRANE EQUATIONS IN 4 SPACE-TIME DIMENSIONS [J].
HOPPE, J .
PHYSICS LETTERS B, 1994, 329 (01) :10-14
[7]  
HOPPE J, KATHEP693
[8]  
HOPPE J, 1999, COMMUN MATH PHYS, V207, P107
[9]  
HOPPE J, HEPTH9311059
[10]   Cherbn-Simons reduction and non-Abelian fluid mechanics [J].
Jackiw, R ;
Nair, VP ;
Pi, SY .
PHYSICAL REVIEW D, 2000, 62 (08) :1-7