Probing the cytotoxicity of CdSe quantum dots with surface modification

被引:104
作者
Guo, Guoning
Liu, Wei [1 ]
Liang, Jiangong
He, Zhike
Xu, Huibi
Yang, Xiangliang
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
cytotoxicity; CdSe quantum dots (QDs); surface modification; poly; (D; L); lactide; (PLA);
D O I
10.1016/j.matlet.2006.07.105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The cytotoxicity of CdSe quantum dots (QDs) with surface modification was reported first in the paper. CdSe QDs were incorporated into poly (D, L) lactide (PLA) nanoparticles and then surface modified with Fluronic (R) 68 (F-68), cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), respectively. Three different particle sizes and zeta potential of the surface modified CdSe QDs were produced using a nano-precipitation method. The cytotoxicity of the surface modified CdSe QDs was evaluated in HepG2 cell model with MTT viability assay. The results showed that the cytotoxicity of the surface modified CdSe QDs in vitro was dependent on the surface properties. Surface modification with F-68 and SDS could lessen the cytotoxicity of CdSe QDs, while surface modification with CTAB showed significant cell damage. CdSe QDs surface modified with F-68 were injected into mice and the fluorescence images in viscus were obtained. The results suggested that CdSe QDs surface modified with F-68 have low cytotoxicity and good potential for biological labeling and imaging applications. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1641 / 1644
页数:4
相关论文
共 32 条
[1]   Nanocrystal targeting in vivo [J].
Åkerman, ME ;
Chan, WCW ;
Laakkonen, P ;
Bhatia, SN ;
Ruoslahti, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12617-12621
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[4]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[5]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[6]   Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics [J].
Chorny, M ;
Fishbein, I ;
Danenberg, HD ;
Golomb, G .
JOURNAL OF CONTROLLED RELEASE, 2002, 83 (03) :389-400
[7]   The potential environmental impact of engineered nanomaterials [J].
Colvin, VL .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1166-1170
[8]  
Derfus AM, 2004, NANO LETT, V4, P11, DOI 10.1021/nl0347334
[9]   Nanotoxicology [J].
Donaldson, K ;
Stone, V ;
Tran, CL ;
Kreyling, W ;
Borm, PJA .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2004, 61 (09) :727-728
[10]   In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].
Dubertret, B ;
Skourides, P ;
Norris, DJ ;
Noireaux, V ;
Brivanlou, AH ;
Libchaber, A .
SCIENCE, 2002, 298 (5599) :1759-1762