Wealth-path dependent utility maximization in incomplete markets

被引:44
作者
Bouchard, B [1 ]
Pham, H
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabil & Modeles Aleatoires, F-75006 Paris, France
[2] Univ Paris 07, CNRS, UMR 7599, Lab Probabil & Modeles Aleatoires, F-75006 Paris, France
关键词
utility maximization; random time horizon; wealth-path dependent utility; incomplete markets; convex duality;
D O I
10.1007/s00780-004-0125-8
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Motivated by an optimal investment problem under time horizon uncertainty and when default may occur, we study a general structure for an incomplete semimartingale model extending the classical terminal wealth utility maximization problem. This modelling leads to the formulation of a wealth-path dependent utility maximization problem. Our main result is an extension of the well-known dual formulation to this context. In contrast with the usual duality approach, we work directly,on the primal problem. Sufficient conditions for characterizing the optimal solution are also provided in the case of complete markets, and are illustrated by examples.
引用
收藏
页码:579 / 603
页数:25
相关论文
共 21 条
[1]  
BLANCHOTSCALLIE.C, 2002, OPTIMAL INVESTMENT C
[2]  
Brannath W, 1999, LECT NOTES MATH, V1709, P349
[3]  
COLLINDUFRESNE P, 2001, EVENT RISK CONTINGEN
[4]   OPTIMAL CONSUMPTION AND PORTFOLIO POLICIES WHEN ASSET PRICES FOLLOW A DIFFUSION PROCESS [J].
COX, JC ;
HUANG, CF .
JOURNAL OF ECONOMIC THEORY, 1989, 49 (01) :33-83
[5]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520
[6]   The fundamental theorem of asset pricing for unbounded stochastic processes [J].
Delbaen, F ;
Schachermayer, W .
MATHEMATISCHE ANNALEN, 1998, 312 (02) :215-250
[7]  
Dellacherie C., 1972, Capacites et Processus Stochastiques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
[8]  
ELKAROUI N, 2002, RANDOM HORIZON
[9]   Optional decompositions under constraints [J].
Follmer, H ;
Kramkov, D .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (01) :1-25
[10]  
Jacod J, 1979, CALCUL STOCHASTIQUE