Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies

被引:3680
作者
Murray, CB
Kagan, CR
Bawendi, MG
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
来源
ANNUAL REVIEW OF MATERIALS SCIENCE | 2000年 / 30卷
关键词
quantum dot; nanoparticle; superlattice; colloidal crystal; supercrystal;
D O I
10.1146/annurev.matsci.30.1.545
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from similar to 1 to 20 nn acid monodisperse to less than or equal to 5% are presented. Preparation of monodisperse samples enables systematic characterization of the structural, electronic, and optical properties of materials as they evolve from molecular to bulk in the nanometer size range. Sample uniformity makes it possible to manipulate nanocrystals into close-packed, glassy, and ordered nanocrystal assemblies (superlattices, colloidal crystals, supercrystals). Rigorous structural characterization is critical to understanding the electronic and optical properties of both nanocrystals and their assemblies. At inter-particle separations 5-100 Angstrom, dipole-dipole interactions lead to energy transfer between neighboring nanocrystals, and electronic tunneling between proximal nanocrystals gives rise to dark and photoconductivity. At separations <5 Angstrom, exchange interactions cause otherwise insulating assemblies to become semiconducting, metallic, or superconducting depending on nanocrystal composition. Tailoring the size and composition of the nanocrystals and the length and electronic structure of the matrix may tune the properties of nanocrystal solid-state materials.
引用
收藏
页码:545 / 610
页数:68
相关论文
共 195 条
  • [1] Agranovich V.M., 1982, Electronic Excitation Energy Transfer in Condensed Matter
  • [2] Semiconductor clusters, nanocrystals, and quantum dots
    Alivisatos, AP
    [J]. SCIENCE, 1996, 271 (5251) : 933 - 937
  • [3] Organization of 'nanocrystal molecules' using DNA
    Alivisatos, AP
    Johnsson, KP
    Peng, XG
    Wilson, TE
    Loweth, CJ
    Bruchez, MP
    Schultz, PG
    [J]. NATURE, 1996, 382 (6592) : 609 - 611
  • [4] ANALYSIS OF SMALL-ANGLE SCATTERING DATA DOMINATED BY MULTIPLE-SCATTERING FOR SYSTEMS CONTAINING ECCENTRICALLY SHAPED PARTICLES OR PORES
    ALLEN, AJ
    BERK, NF
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1994, 27 (pt 6) : 878 - 891
  • [5] Optical absorption spectra of nanocrystal gold molecules
    Alvarez, MM
    Khoury, JT
    Schaaff, TG
    Shafigullin, MN
    Vezmar, I
    Whetten, RL
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) : 3706 - 3712
  • [6] ''Coulomb staircase'' at room temperature in a self-assembled molecular nanostructure
    Andres, RP
    Bein, T
    Dorogi, M
    Feng, S
    Henderson, JI
    Kubiak, CP
    Mahoney, W
    Osifchin, RG
    Reifenberger, R
    [J]. SCIENCE, 1996, 272 (5266) : 1323 - 1325
  • [7] Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters
    Andres, RP
    Bielefeld, JD
    Henderson, JI
    Janes, DB
    Kolagunta, VR
    Kubiak, CP
    Mahoney, WJ
    Osifchin, RG
    [J]. SCIENCE, 1996, 273 (5282) : 1690 - 1693
  • [8] Evolution from individual to collective electron states in a dense quantum dot ensemble
    Artemyev, MV
    Bibik, AI
    Gurinovich, LI
    Gaponenko, SV
    Woggon, U
    [J]. PHYSICAL REVIEW B, 1999, 60 (03) : 1504 - 1506
  • [9] Electroluminescence in thin solid films of closely packed CdS nanocrystals
    Artemyev, MV
    Sperling, V
    Woggon, U
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (10) : 6975 - 6977
  • [10] Electrons in artificial atoms
    Ashoori, RC
    [J]. NATURE, 1996, 379 (6564) : 413 - 419