Recognition of a single transmembrane degron by sequential quality control checkpoints

被引:28
作者
Fayadat, L [1 ]
Kopito, RR [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
关键词
D O I
10.1091/mbc.E02-06-0363
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To understand the relationship between conformational maturation and quality control-mediated proteolysis in the secretory pathway, we engineered the well-characterized degron from the alpha-subunit of the T-cell antigen receptor (TCRalpha) into the alpha-helical transmembrane domain of homotrimeric type I integral membrane protein, influenza hemagglutinin (HA). Although the membrane degron does not appear to interfere with acquisition of native secondary structure, as assessed by the formation of native intrachain disulfide bonds, only similar to50% of nascent mutant HA chains (HA(++)) become membrane-integrated and acquire complex N-linked glycans indicative of transit to a post-ER compartment. The remaining similar to50% of nascent HA(++) chains fail to integrate into the lipid bilayer and are subject to proteasome-dependent degradation. Site-specific cleavage by extracellular trypsin and reactivity with conformation-specific monoclonal antibodies indicate that membrane-integrated HA(++) molecules are able to mature to the plasma membrane with a conformation indistinguishable from that of HA(wt). These apparently native HA(++) molecules are, nevertheless, rapidly degraded by a process that is insensitive to proteasome inhibitors but blocked by lysosomotropic amines. These data suggest the existence in the secretory pathway of at least two sequential quality control checkpoints that recognize the same transmembrane degron, thereby ensuring the fidelity of protein deployment to the plasma membrane.
引用
收藏
页码:1268 / 1278
页数:11
相关论文
共 38 条
[1]   COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments [J].
Benharouga, M ;
Haardt, M ;
Kartner, N ;
Lukacs, GL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (05) :957-970
[2]   Ubiquitin and the control of protein fate in the secretory and endocytic pathways [J].
Bonifacino, JS ;
Weissman, AM .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :19-57
[3]   ROLE OF POTENTIALLY CHARGED TRANSMEMBRANE RESIDUES IN TARGETING PROTEINS FOR RETENTION AND DEGRADATION WITHIN THE ENDOPLASMIC-RETICULUM [J].
BONIFACINO, JS ;
COSSON, P ;
SHAH, N ;
KLAUSNER, RD .
EMBO JOURNAL, 1991, 10 (10) :2783-2793
[4]   A PEPTIDE SEQUENCE CONFERS RETENTION AND RAPID DEGRADATION IN THE ENDOPLASMIC-RETICULUM [J].
BONIFACINO, JS ;
SUZUKI, CK ;
KLAUSNER, RD .
SCIENCE, 1990, 247 (4938) :79-82
[5]  
BORDIER C, 1981, J BIOL CHEM, V256, P1604
[6]   FOLDING OF INFLUENZA HEMAGGLUTININ IN THE ENDOPLASMIC-RETICULUM [J].
BRAAKMAN, I ;
HOOVERLITTY, H ;
WAGNER, KR ;
HELENIUS, A .
JOURNAL OF CELL BIOLOGY, 1991, 114 (03) :401-411
[7]   SELECTIVE DEGRADATION OF T-CELL ANTIGEN RECEPTOR CHAINS RETAINED IN A PRE-GOLGI COMPARTMENT [J].
CHEN, C ;
BONIFACINO, JS ;
YUAN, LC ;
KLAUSNER, RD .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2149-2161
[8]   COTRANSLATIONAL FOLDING AND CALNEXIN BINDING DURING GLYCOPROTEIN-SYNTHESIS [J].
CHEN, W ;
HELENIUS, J ;
BRAAKMAN, I ;
HELENIUS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6229-6233
[9]   ASSEMBLY OF INFLUENZA HEMAGGLUTININ TRIMERS AND ITS ROLE IN INTRACELLULAR-TRANSPORT [J].
COPELAND, CS ;
DOMS, RW ;
BOLZAU, EM ;
WEBSTER, RG ;
HELENIUS, A .
JOURNAL OF CELL BIOLOGY, 1986, 103 (04) :1179-1191
[10]   FOLDING, TRIMERIZATION, AND TRANSPORT ARE SEQUENTIAL EVENTS IN THE BIOGENESIS OF INFLUENZA-VIRUS HEMAGGLUTININ [J].
COPELAND, CS ;
ZIMMER, KP ;
WAGNER, KR ;
HEALEY, GA ;
MELLMAN, I ;
HELENIUS, A .
CELL, 1988, 53 (02) :197-209