Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis

被引:184
作者
Shimada, Y [1 ]
Goda, H
Nakamura, A
Takatsuto, S
Fujioka, S
Yoshida, S
机构
[1] RIKEN, Wako, Saitama 3510198, Japan
[2] Joetsu Univ Educ, Dept Chem, Joetsu, Niigata 9438512, Japan
[3] Saitama Univ, Grad Sch Sci & Engn, Urawa, Saitama 3388570, Japan
关键词
D O I
10.1104/pp.013029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. There is only limited information on where BRs are synthesized and used. We studied the organ specificity of BR biosynthesis in Arabidopsis, using two different approaches: We analyzed the expression of BR-related genes using real-time quantitative reverse transcriptase-polymerase chain reaction, and analyzed endogenous BRs using gas chromatography-mass spectrometry. Before starting this study, we cloned the second BR-6-oxidase (BR6ox2) gene from Arabidopsis and found that the encoded enzyme has the same substrate specificity as the enzyme encoded by the previously isolated 6-oxidase gene (BR6ox1) of Arabidopsis. Endogenous BRs and the expression of BR-related genes were detected in all organs tested. The highest level of endogenous BRs and the highest expression of the BR6ox1, BR6ox2, and DWF4 genes were observed in apical shoots, which contain actively developing tissues. These genes are important in BR biosynthesis because they encode the rate-limiting or farthest downstream enzyme in the BR biosynthesis pathway. The second highest level of endogenous BRs and expression of BR6ox1 and DWF4 were observed in siliques, which contains actively developing embryos and seeds. These findings indicate that BRs are synthesized in all organs tested, but are most actively synthesized in young, actively developing organs. In contrast, synthesis was limited in mature organs. Our observations are consistent with the idea that BRs function as the growth-promoting hormone in plants.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 65 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in Planta [J].
Asami, T ;
Mizutani, M ;
Fujioka, S ;
Goda, H ;
Min, YK ;
Shimada, Y ;
Nakano, T ;
Takatsuto, S ;
Matsuyama, T ;
Nagata, N ;
Sakata, K ;
Yoshida, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :25687-25691
[3]   Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis [J].
Bancos, S ;
Nomura, T ;
Sato, T ;
Molnár, G ;
Bishop, GJ ;
Koncz, C ;
Yokota, T ;
Nagy, F ;
Szekeres, M .
PLANT PHYSIOLOGY, 2002, 130 (01) :504-513
[4]   The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family [J].
Bishop, GJ ;
Harrison, K ;
Jones, JDG .
PLANT CELL, 1996, 8 (06) :959-969
[5]   Brassinosteroids and plant steroid hormone signaling [J].
Bishop, GJ ;
Koncz, C .
PLANT CELL, 2002, 14 :S97-S110
[6]   The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis [J].
Bishop, GJ ;
Nomura, T ;
Yokota, T ;
Harrison, K ;
Noguchi, T ;
Fujioka, S ;
Takatsuto, S ;
Jones, JDG ;
Kamiya, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1761-1766
[7]   Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis [J].
Choe, S ;
Tanaka, A ;
Noguchi, T ;
Fujioka, S ;
Takatsuto, S ;
Ross, AS ;
Tax, FE ;
Yoshida, S ;
Feldman, KA .
PLANT JOURNAL, 2000, 21 (05) :431-443
[8]   Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase [J].
Choe, S ;
Schmitz, RJ ;
Fujioka, S ;
Takatsuto, S ;
Lee, MO ;
Yoshida, S ;
Feldmann, KA ;
Tax, FE .
PLANT PHYSIOLOGY, 2002, 130 (03) :1506-1515
[9]   Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis [J].
Choe, S ;
Fujioka, S ;
Noguchi, T ;
Takatsuto, S ;
Yoshida, S ;
Feldmann, KA .
PLANT JOURNAL, 2001, 26 (06) :573-582
[10]   The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis [J].
Choe, S ;
Dilkes, BP ;
Gregory, BD ;
Ross, AS ;
Yuan, H ;
Noguchi, T ;
Fujioka, S ;
Takatsuto, S ;
Tanaka, A ;
Yoshida, S ;
Tax, FE ;
Feldmann, KA .
PLANT PHYSIOLOGY, 1999, 119 (03) :897-907