Multi-tasking on chromatin with the SAGA coactivator complexes

被引:86
作者
Daniel, Jeremy A. [1 ]
Grant, Patrick A. [1 ]
机构
[1] Univ Virginia, Sch Med, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
基金
美国国家卫生研究院;
关键词
SAGA; acetyltransferase; deubiquitinase; transcription; histone;
D O I
10.1016/j.mrfmmm.2006.09.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Over the past 10 years, much progress has been made to understand the roles of the similar, yet distinct yeast SAGA and SLIK coactivator complexes involved in histone post-translational modification and gene regulation. Many different groups have elucidated functions of the SAGA complexes including identification of novel components, which have conferred additional distinct functions. Together, recent studies demonstrate unique attributes of the SAGA coactivator complexes in histone acetylation, methylation, phosphorylation, and deubiquitination. In addition to roles in transcriptional activation with the 19S proteasome regulatory particle, recent evidence also suggests functions for SAGA in elongation and mRNA export. The modular nature of SAGA allows this -1.8MDa complex to organize its functions and carry out multiple roles during transcription, particularly under conditions of cellular stress. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 149 条
[1]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[2]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[3]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[4]   Multiple mechanistically distinct functions of SAGA at the PH05 promoter [J].
Barbaric, S ;
Reinke, H ;
Hörz, W .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (10) :3468-3476
[5]   Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex [J].
Barlev, NA ;
Poltoratsky, V ;
Owen-Hughes, T ;
Ying, C ;
Liu, L ;
Workman, JL ;
Berger, SL .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (03) :1349-1358
[6]  
Bash R, 2001, PROG NUCLEIC ACID RE, V65, P197
[7]   Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters [J].
Belotserkovskaya, R ;
Sterner, DE ;
Deng, M ;
Sayre, MH ;
Lieberman, PM ;
Berger, SL .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) :634-647
[8]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[9]   In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer [J].
Bhaumik, SR ;
Raha, T ;
Aiello, DP ;
Green, MR .
GENES & DEVELOPMENT, 2004, 18 (03) :333-343
[10]   Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo [J].
Bhaumik, SR ;
Green, MR .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (21) :7365-7371