The Jacobian conjecture as a problem of perturbative quantum field theory

被引:10
作者
Abdesselam, A [1 ]
机构
[1] Univ Paris 13, Dept Math, F-93430 Villetaneuse, France
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / 02期
关键词
D O I
10.1007/s00023-003-0127-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Jacobian conjecture is an old unsolved problem in mathematics, which has been unsuccessfully attacked from many different angles. We add here another point of view pertaining to the so-called formal inverse approach, that of perturbative quantum field theory.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 36 条
[11]   ON THE VARIATION IN THE CO-HOMOLOGY OF THE SYMPLECTIC FORM OF THE REDUCED PHASE-SPACE [J].
DUISTERMAAT, JJ ;
HECKMAN, GJ .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :259-268
[12]  
Feldman J., 2002, CRM MONOGRAPH SERIES, V16
[14]  
Good IJ, 1960, P CAMBRIDGE PHIL SOC, V56, P367, DOI 10.1017/S0305004100034666
[15]  
GRIGIS A, 1994, LONDON MATH LECT NOT, V196
[16]   INCIDENCE ALGEBRA ANTIPODES AND LAGRANGE INVERSION IN ONE AND SEVERAL-VARIABLES [J].
HAIMAN, M ;
SCHMITT, W .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 50 (02) :172-185
[17]  
HENRICI P, 1984, JAHRESBER DTSCH MATH, V86, P115
[18]  
Jacobi C.G.J., 1830, J REINE ANGEW MATH, V6, P257
[19]   A COMBINATORIAL THEORY OF FORMAL SERIES [J].
JOYAL, A .
ADVANCES IN MATHEMATICS, 1981, 42 (01) :1-82
[20]  
KELLER OH, 1939, MONATSH MATH PHYS, V47, P299, DOI DOI 10.1007/BF01695502(GERMAN