Comparison of model-estimated and measured diffuse downward irradiance at surface in cloud-free skies

被引:52
作者
Halthore, RN [1 ]
Schwartz, SE [1 ]
机构
[1] Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA
关键词
D O I
10.1029/2000JD900224
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Diffuse downward shortwave irradiance at the surface arises from the scattering of radiation by molecules and aerosol particles. Recently, we reported that pyranometer-measuure diffuse solar irradiance in cloud-free atmospheres is overestimated by radiative transfer models at two low-altitude sites by an amount that exceeds modeling and measurement uncertainties but is correctly estimated within these uncertainties at two high-altitude sites [Halthore el al., 1998]. Here we explore this phenomenon in detail, with more cases and improved uncertainty analysis, confirming that the excess in modeled diffuse irradiance cannot be explained by uncertainties in measurements or aerosol-scattering properties that are input into the radiative transfer models or by errors in multiple-scattering schemes. The phenomenon is observed for all comparisons with data obtained intermittently over a 5-year period at the low-altitude sites. Model computations also exceed radiometer-measured sky radiance along the solar almucantar. Despite the inconsistencies between measured and modeled diffuse irradiance, atmospheric transmittance models correctly compute direct normal solar irradiance at all sites. These results indicate that at low altitudes a continuum atmospheric absorption process accounting for 0.022 +/- 0.01 in vertical optical thickness at 550 nm, corresponding to 4 +/- 2% absorptance, may need to be included in radiative transfer models and in models that retrieve aerosol optical thickness from extinction measurements. This is a substantial excess absorption with major implications for climate modeling and weather forecasting. In remote sensing studies, neglect of this excess absorption would lead to substantial errors in satellite sensor calibration and satellite inferred top-of-atmosphere flux. An agent or process for this absorption has not yet been identified.
引用
收藏
页码:20165 / 20177
页数:13
相关论文
共 54 条
[31]   RELATIONSHIP BETWEEN ASYMMETRY PARAMETER AND HEMISPHERIC BACKSCATTER RATIO - IMPLICATIONS FOR CLIMATE FORCING BY AEROSOLS [J].
MARSHALL, SF ;
COVERT, DS ;
CHARLSON, RJ .
APPLIED OPTICS, 1995, 34 (27) :6306-6311
[32]   Ozone monitoring with TIROS-N operational vertical sounders [J].
Neuendorffer, AC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D13) :18807-18828
[33]   PHYSICAL CHARACTERISTICS OF THE DAVOS-TYPE PYRRADIOMETER FOR SHORT-WAVE AND LONG-WAVE-RADIATION [J].
OHMURA, A ;
SCHROFF, K .
ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1983, 33 (1-2) :57-76
[34]  
Peixoto J. P., 1992, Physics of Climate
[35]   WARM POOL HEAT-BUDGET AND SHORTWAVE CLOUD FORCING - A MISSING PHYSICS [J].
RAMANATHAN, V ;
SUBASILAR, B ;
ZHANG, GJ ;
CONANT, W ;
CESS, RD ;
KIEHL, JT ;
GRASSL, H ;
SHI, L .
SCIENCE, 1995, 267 (5197) :499-503
[36]  
RICCHIAZZI P, 1999, 9 ATM RAD MEAS ARM S
[37]   The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition [J].
Rothman, LS ;
Rinsland, CP ;
Goldman, A ;
Massie, ST ;
Edwards, DP ;
Flaud, JM ;
Perrin, A ;
Camy-Peyret, C ;
Dana, V ;
Mandin, JY ;
Schroeder, J ;
McCann, A ;
Gamache, RR ;
Wattson, RB ;
Yoshino, K ;
Chance, KV ;
Jucks, KW ;
Brown, LR ;
Nemtchinov, V ;
Varanasi, P .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1998, 60 (05) :665-710
[38]   High-latitude stratospheric NO2 and HNO3 over Fairbanks (65°N) 1992-1994 [J].
Slusser, J ;
Liu, X ;
Stamnes, K ;
Shaw, G ;
Smith, R ;
Storvold, R ;
Murcray, F ;
Lee, A ;
Good, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D1) :1549-1554
[39]   Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere [J].
Solomon, S ;
Portmann, RW ;
Sanders, RW ;
Daniel, JS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D4) :3847-3858
[40]   NUMERICALLY STABLE ALGORITHM FOR DISCRETE-ORDINATE-METHOD RADIATIVE-TRANSFER IN MULTIPLE-SCATTERING AND EMITTING LAYERED MEDIA [J].
STAMNES, K ;
TSAY, SC ;
WISCOMBE, W ;
JAYAWEERA, K .
APPLIED OPTICS, 1988, 27 (12) :2502-2509