Proteasomal degradation in plant-pathogen interactions

被引:46
作者
Citovsky, Vitaly [1 ]
Zaltsman, Adi [1 ]
Kozlovsky, Stanislav V. [1 ]
Gafni, Yedidya [2 ]
Krichevsky, Alexander [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] Agr Res Org, Dept Genet, IL-50250 Bet Dagan, Israel
关键词
26S proteasome; Ubiquitination; Plant-pathogen interaction; Plant immunity; TOBACCO-MOSAIC-VIRUS; F-BOX PROTEIN; SYSTEMIC ACQUIRED-RESISTANCE; IV SECRETION SYSTEMS; T-DNA TRANSFER; PROGRAMMED CELL-DEATH; SCF UBIQUITIN-LIGASE; AGROBACTERIUM-TUMEFACIENS; DISEASE RESISTANCE; GENETIC-TRANSFORMATION;
D O I
10.1016/j.semcdb.2009.05.012
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant-pathogen interactions. The specific functions of proteasomal degradation in plant-pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1048 / 1054
页数:7
相关论文
共 103 条
[1]   Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity [J].
Abramovitch, RB ;
Janjusevic, R ;
Stebbins, CE ;
Martin, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2851-2856
[2]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[3]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[4]   Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems [J].
Angot, Aurelie ;
Vergunst, Annette ;
Genin, Stephane ;
Peeters, Nemo .
PLOS PATHOGENS, 2007, 3 (01) :1-13
[5]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[6]   Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner [J].
Badel, JL ;
Nomura, K ;
Bandyopadhyay, S ;
Shimizu, R ;
Collmer, A ;
He, SY .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1239-1251
[7]   Viral suppression of systemic silencing [J].
Baulcombe, D .
TRENDS IN MICROBIOLOGY, 2002, 10 (07) :306-308
[8]   The polerovirus silencing suppressor PO targets ARGONAUTE proteins for degradation [J].
Baumberger, Nicolas ;
Tsai, Ching-Hsui ;
Lie, Miranda ;
Havecker, Ericka ;
Baulcombe, David C. .
CURRENT BIOLOGY, 2007, 17 (18) :1609-1614
[9]   ALTERED RESPONSE TO VIRAL-INFECTION BY TOBACCO PLANTS PERTURBED IN UBIQUITIN SYSTEM [J].
BECKER, F ;
BUSCHFELD, E ;
SCHELL, J ;
BACHMAIR, A .
PLANT JOURNAL, 1993, 3 (06) :875-881
[10]   A branched pathway for transgene-induced RNA silencing in plants [J].
Béclin, C ;
Boutet, S ;
Waterhouse, P ;
Vaucheret, H .
CURRENT BIOLOGY, 2002, 12 (08) :684-688