Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks

被引:88
作者
Comyn-Platt, Edward [1 ]
Hayman, Garry [1 ]
Huntingford, Chris [1 ]
Chadburn, Sarah E. [2 ,3 ]
Burke, Eleanor J. [4 ]
Harper, Anna B. [3 ]
Collins, William J. [5 ]
Webber, Christopher P. [5 ]
Powell, Tom [3 ]
Cox, Peter M. [3 ]
Gedney, Nicola [6 ]
Sitch, Stephen [3 ]
机构
[1] Ctr Ecol & Hydrol, Wallingford, Oxon, England
[2] Univ Leeds, Leeds, W Yorkshire, England
[3] Univ Exeter, Exeter, Devon, England
[4] Met Off Hadley Ctr, Exeter, Devon, England
[5] Univ Reading, Reading, Berks, England
[6] Joint Ctr Hydrometeorol Res, Met Off Hadley Ctr, Wallingford, Oxon, England
基金
英国自然环境研究理事会; 英国工程与自然科学研究理事会;
关键词
ENVIRONMENT SIMULATOR JULES; CLIMATE-CHANGE; METHANE EMISSIONS; MODEL SIMULATIONS; REPRESENTATION; 1.5-DEGREES-C; SENSITIVITY; CONSISTENT; DYNAMICS; IMPACTS;
D O I
10.1038/s41561-018-0174-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Global methane emissions from natural wetlands and carbon release from permafrost thaw have a positive feedback on climate, yet are not represented in most state-of-the-art climate models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, enhancing the combined feedback strength. We present simulations with an inverted intermediate complexity climate model, which follows prescribed global warming pathways to stabilization at 1.5 or 2.0 degrees C above pre-industrial levels by the year 2100, and which incorporates a state-of-the-art global land surface model with updated descriptions of wet-land and permafrost carbon release. We demonstrate that the climate feedbacks from those two processes are substantial. Specifically, permissible anthropogenic fossil fuel CO2 emission budgets are reduced by 17-23% (47-56 GtC) for stabilization at 1.5 degrees C, and 9-13% (52-57 GtC) for 2.0 degrees C stabilization. In our simulations these feedback processes respond more quickly at temperatures below 1.5 degrees C, and the differences between the 1.5 and 2 degrees C targets are disproportionately small. This key finding holds for transient emission pathways to 2100 and does not account for longer-term implications of these feedback processes. We conclude that natural feedback processes from wetlands and permafrost must be considered in assessments of transient emission pathways to limit global warming.
引用
收藏
页码:568 / +
页数:9
相关论文
共 45 条
[1]  
[Anonymous], CLIMATE CHANGE 2013
[2]  
[Anonymous], 2009, FCCCCP2015L9REV1
[3]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[4]  
Brown J., 1998, CIRCUMARCTIC MAP PER
[5]   CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C [J].
Burke, Eleanor J. ;
Chadburn, Sarah E. ;
Huntingford, Chris ;
Jones, Chris D. .
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (02)
[6]   Quantifying uncertainties of permafrost carbon-climate feedbacks [J].
Burke, Eleanor J. ;
Ekici, Altug ;
Huang, Ye ;
Chadburn, Sarah E. ;
Huntingford, Chris ;
Ciais, Philippe ;
Friedlingstein, Pierre ;
Peng, Shushi ;
Krinner, Gerhard .
BIOGEOSCIENCES, 2017, 14 (12) :3051-3066
[7]   A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions [J].
Burke, Eleanor J. ;
Chadburn, Sarah E. ;
Ekici, Altug .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :959-975
[8]   An improved representation of physical permafrost dynamics in the JULES land-surface model [J].
Chadburn, S. ;
Burke, E. ;
Essery, R. ;
Boike, J. ;
Langer, M. ;
Heikenfeld, M. ;
Cox, P. ;
Friedlingstein, P. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (05) :1493-1508
[9]  
Chadburn SE, 2017, NAT CLIM CHANGE, V7, P340, DOI [10.1038/nclimate3262, 10.1038/NCLIMATE3262]
[10]   The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics [J].
Clark, D. B. ;
Mercado, L. M. ;
Sitch, S. ;
Jones, C. D. ;
Gedney, N. ;
Best, M. J. ;
Pryor, M. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Blyth, E. ;
Boucher, O. ;
Harding, R. J. ;
Huntingford, C. ;
Cox, P. M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :701-722