Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η6:η6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity

被引:198
作者
Evans, WJ [1 ]
Kozimor, SA
Ziller, JW
Kaltsoyannis, N
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] UCL, London WC1E 0AJ, England
关键词
D O I
10.1021/ja0463886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The sterically crowded (C5Me5)(3)U Complex reacts with KC8 or K/(18-crown-6) in benzene to form [(C5Me5)(2)U](2)(mu-eta(6):eta(6)-C6H6), 1, and KC5Me5. These reactions suggested that (C5Me5)(3)U could be susceptible to (C5Me5)(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C5Me5)(3)U was treated with KN(SiMe3)(2) to form (C5Me5)(2)U[N(SiMe3)(2)] and KC5Me5. 1 has long U-C(C5Me5) bond distances comparable to (C5Me5)(3)U, and it too is susceptible to (C5Me5)(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe3)(2) to make its amide-substituted analogue {[(Me3Si)(2)N](C5Me5)U}(2)(mu-eta(6):eta(6)-C6H6), 2. Complexes 1 and 2 have nonplanar C6H6-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. [(C5Me5)(2)U](2)(mu-eta(6):eta(6)-C6H6) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form [(C5Me5)(C8H8)U](2)(mu-eta(3):eta(3)-C8H8), (C5Me5)(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C5Me5)(1-) ligands, and two electrons from a bridging (C6H6)(2-) moiety.
引用
收藏
页码:14533 / 14547
页数:15
相关论文
共 106 条
  • [11] Mono(pentamethylcyclopentadienyl)uranium(III) complexes:: Synthesis, properties, and X-ray structures of (η-C5Me5)UI2(THF)3, (η-C5Me5)UI2(py)3, and (η-C5Me5)U[N(SiMe3)2]2
    Avens, LR
    Burns, CJ
    Butcher, RJ
    Clark, DL
    Gordon, JC
    Schake, AR
    Scott, BL
    Watkin, JG
    Zwick, BD
    [J]. ORGANOMETALLICS, 2000, 19 (04) : 451 - 457
  • [12] Self-consistent molecular Hartree-Fock-Slater calculations - I. The computational procedure
    Baerends, E. J.
    Ellis, D. E.
    Ros, P.
    [J]. CHEMICAL PHYSICS, 1973, 2 (01) : 41 - 51
  • [13] INFLUENCE OF ELECTRONIC FACTORS ON THE STRUCTURE AND STABILITY OF URANIUM-COMPOUNDS - TRI-TERT-BUTYL METHOXIDE URANIUM(IV) COMPLEXES
    BAUDIN, C
    BAUDRY, D
    EPHRITIKHINE, M
    LANCE, M
    NAVAZA, A
    NIERLICH, M
    VIGNER, J
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1991, 415 (01) : 59 - 73
  • [14] ARENE URANIUM BOROHYDRIDES - SYNTHESIS AND CRYSTAL-STRUCTURE OF (ETA-C6ME6)U(BH4)3
    BAUDRY, D
    BULOT, E
    CHARPIN, P
    EPHRITIKHINE, M
    LANCE, M
    NIERLICH, M
    VIGNER, J
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1989, 371 (02) : 155 - 162
  • [15] PENTADIENYL, CYCLOHEXADIENYL, AND ARENE URANIUM BOROHYDRIDE COMPLEXES
    BAUDRY, D
    BULOT, E
    EPHRITIKHINE, M
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1988, (20) : 1369 - 1370
  • [16] EFFECT OF MAGNETICALLY ANISOTROPIC SOLVENT MOLECULES ON NUCLEAR SCREENING
    BECCONSALL, JK
    [J]. MOLECULAR PHYSICS, 1968, 15 (02) : 129 - +
  • [17] REACTIONS OF POTASSIUM-GRAPHITE
    BERGBREITER, DE
    KILLOUGH, JM
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1978, 100 (07) : 2126 - 2134
  • [18] New advances in the chemistry of uranium amide compounds
    Berthet, JC
    Ephritikhine, M
    [J]. COORDINATION CHEMISTRY REVIEWS, 1998, 178 : 83 - 116
  • [19] BIAGINI P, 1994, GAZZ CHIM ITAL, V124, P217
  • [20] SYSTEMATICS IN THE MAGNETIC-PROPERTIES OF TERNARY ACTINOID OXIDES
    BICKEL, M
    KANELLAKOPULOS, B
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1993, 107 (01) : 273 - 284