Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor

被引:81
作者
Nagy, Zoltan K. [1 ]
Mahn, Bernd
Franke, Ruediger
Allgoewer, Frank
机构
[1] Loughborough Univ Technol, Dept Chem Engn, Loughborough LE11 3TU, Leics, England
[2] BASF AG, Ludwigshafen, Germany
[3] ABB Kraftwerke AG, Corp Res, Ladenburg, Germany
[4] Univ Stuttgart, D-7000 Stuttgart, Germany
关键词
industrial control; maximum likelihood estimation; multiple shooting algorithm; nonlinear model predictive control; parameter adaptive extended Kalman filter; parameter estimation; state estimation; real-time control;
D O I
10.1016/j.conengprac.2006.05.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper illustrates the benefits of nonlinear model predictive control (NMPC) for the setpoint tracking control of an industrial batch polymerization reactor. Real-time feasibility of the on-line optimization problem from the NMPC is achieved using an efficient multiple shooting algorithm. A real-time formulation of the NMPC that takes computational delay into account is described. The control relevant model for the NMPC is derived from the complex-first principles model and is fitted to the experimental data using maximum likelihood estimation. A parameter adaptive extended Kalman filter (PAEKF) is used for state estimation and on-line model adaptation. The performance of the NMPC implementation is assessed via simulation and experimental results. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2001, THESIS U HEIDELBERG
[2]   NONLINEAR CONTROL OF CHEMICAL PROCESSES - A REVIEW [J].
BEQUETTE, BW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1991, 30 (07) :1391-1413
[3]  
BIEGLER L, 2000, NONLINEAR PREDICTIVE
[4]  
BODIZS L, 2006, IN PRESS J PROCESS C
[5]   Optimal operation of batch reactors - a personal view [J].
Bonvin, D .
JOURNAL OF PROCESS CONTROL, 1998, 8 (5-6) :355-368
[6]  
BONVIN D, 2006, IN PRESS IEEE CONTRO
[7]   Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations [J].
Diehl, M ;
Bock, HG ;
Schlöder, JP ;
Findeisen, R ;
Nagy, Z ;
Allgöwer, F .
JOURNAL OF PROCESS CONTROL, 2002, 12 (04) :577-585
[8]   Efficient sensitivity analysis of large-scale differential-algebraic systems [J].
Feehery, WF ;
Tolsma, JE ;
Barton, PI .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (01) :41-54
[9]  
FRANKE R, HQP SOLVER NONLINEAR
[10]  
HELBIG A, 1996, P UKACC INT C CONTR, P1172