Lateral carrier confinement in miniature lasers using quantum dots

被引:20
作者
Kim, JK [1 ]
Naone, RL [1 ]
Coldren, LA [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
lateral carrier confinement; lateral carrier localization; quantum dots; vertical-cavity surface-emitting lasers (VCSEL's);
D O I
10.1109/2944.865105
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although quantum-dot (QD) lasers are yet to reach their promise of ultralow threshold and high characteristic temperature because of QD size nonuniformity, we have found that they can be used to effectively limit the lateral diffusion of carriers in the active region, enabling the scaling of lasers to small lateral dimensions. Although oxide apertures continue to enable improved performance in vertical-cavity surface-emitting lasers (VCSEL's) by reducing optical losses and current spreading, lateral carrier losses remain uncontrolled. We investigate QD active material in which lateral diffusion is intentionally reduced. Cathodoluminescence (CL) results demonstrate reduced lateral diffusion in the material with which we expect 50% reduction in the threshold current for 1-mu m-wide edge-emitters or 5-mu m-diameter VCSEL's. We have made QD stripe lasers with submicrometer widths that lase from the ground state and have quantified the lateral carrier reduction in the QD laser active region. We show empirically that the degree of lateral carrier confinement is dependent on the quantum state from which lasing occurs and demonstrate 63% reduction in lateral carrier leakage for the ground-state lasers, Finally, the scaling of threshold current in QD VCSEL's is compared with that of quantum-well (QW) VCSEL's by numerical modeling for future design considerations.
引用
收藏
页码:504 / 510
页数:7
相关论文
共 13 条
[1]   InAs-GaAs quantum dots: From growth to lasers [J].
Bimberg, D ;
Ledentsov, NN ;
Grundmann, M ;
Kirstaedter, N ;
Schmidt, OG ;
Mao, MH ;
Ustinov, VM ;
Egorov, AY ;
Zhukov, AE ;
Kopev, PS ;
Alferov, ZI ;
Ruvimov, SS ;
Gosele, U ;
Heydenreich, J .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1996, 194 (01) :159-173
[2]   ANALYSIS OF CURRENT SPREADING, CARRIER DIFFUSION, AND TRANSVERSE-MODE GUIDING IN SURFACE EMITTING LASERS [J].
DUTTA, NK .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (05) :1961-1963
[3]   Small efficient vertical cavity lasers with tapered oxide apertures [J].
Hegblom, ER ;
Margalit, NM ;
Fiore, A ;
Coldren, LA .
ELECTRONICS LETTERS, 1998, 34 (09) :895-897
[4]   Scattering losses from dielectric apertures in vertical-cavity lasers [J].
Hegblom, ER ;
Babic, DI ;
Thibeault, BJ ;
Coldren, LA .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) :379-389
[5]   MIGRATION-ENHANCED EPITAXY OF GAAS AND ALGAAS [J].
HORIKOSHI, Y ;
KAWASHIMA, M ;
YAMAGUCHI, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1988, 27 (02) :169-179
[6]   LATERAL CARRIER DIFFUSION AND SURFACE RECOMBINATION IN INGAAS/ALGAAS QUANTUM-WELL RIDGE-WAVE-GUIDE LASERS [J].
HU, SY ;
CORZINE, SW ;
LAW, KK ;
YOUNG, DB ;
GOSSARD, AC ;
COLDREN, LA ;
MERZ, JL .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (08) :4479-4487
[7]   Electron and hole tunneling in a moderate density quantum dot ensemble with shallow confinement potentials [J].
Huffaker, DL ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 1998, 73 (03) :366-368
[8]   Room-temperature, electrically-pumped multiple-active-region VCSELs with high differential efficiency at 1.55μm [J].
Kim, JK ;
Hall, E ;
Sjölund, O ;
Almuneau, G ;
Coldren, LA .
ELECTRONICS LETTERS, 1999, 35 (13) :1084-1085
[9]   Epitaxially-stacked multiple-active-region 1.55 μm lasers for increased differential efficiency [J].
Kim, JK ;
Hall, E ;
Sjölund, O ;
Coldren, LA .
APPLIED PHYSICS LETTERS, 1999, 74 (22) :3251-3253
[10]   Design parameters for lateral carrier confinement in quantum-dot lasers [J].
Kim, JK ;
Strand, TA ;
Naone, RL ;
Coldren, LA .
APPLIED PHYSICS LETTERS, 1999, 74 (19) :2752-2754