Near-field cavity optomechanics with nanomechanical oscillators

被引:443
作者
Anetsberger, G. [1 ]
Arcizet, O. [1 ]
Unterreithmeier, Q. P. [2 ,3 ]
Riviere, R. [1 ]
Schliesser, A. [1 ]
Weig, E. M. [2 ,3 ]
Kotthaus, J. P. [2 ,3 ]
Kippenberg, T. J. [1 ,4 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Munich, Fak Phys, D-80539 Munich, Germany
[3] Univ Munich, Ctr NanoSci, D-80539 Munich, Germany
[4] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
QUANTUM-NOISE; RESONATORS;
D O I
10.1038/NPHYS1425
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cavity-enhanced radiation-pressure coupling between optical and mechanical degrees of freedom allows quantum-limited position measurements and gives rise to dynamical backaction, enabling amplification and cooling of mechanical motion. Here, we demonstrate purely dispersive coupling of high-Q nanomechanical oscillators to an ultrahigh-finesse optical microresonator via its evanescent field, extending cavity optomechanics to nanomechanical oscillators. Dynamical backaction mediated by the optical dipole force is observed, leading to laser-like coherent nanomechanical oscillations solely due to radiation pressure. Moreover, sub-fm Hz(-1/2) displacement sensitivity is achieved, with a measurement imprecision equal to the standard quantum limit (SQL), which coincides with the nanomechanical oscillator's zero-point fluctuations. The achievement of an imprecision at the SQL and radiation-pressure dynamical backaction for nanomechanical oscillators may have implications not only for detecting quantum phenomena in mechanical systems, but also for a variety of other precision experiments. Owing to the flexibility of the near-field coupling platform, it can be readily extended to a diverse set of nanomechanical oscillators. In addition, the approach provides a route to experiments where radiation-pressure quantum backaction dominates at room temperature, enabling ponderomotive squeezing or quantum non-demolition measurements.
引用
收藏
页码:909 / 914
页数:6
相关论文
共 50 条
[1]   Ultralow-dissipation optomechanical resonators on a chip [J].
Anetsberger, G. ;
Riviere, R. ;
Schliesser, A. ;
Arcizet, O. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2008, 2 (10) :627-633
[2]   Observation of strong coupling between one atom and a monolithic microresonator [J].
Aoki, Takao ;
Dayan, Barak ;
Wilcut, E. ;
Bowen, W. P. ;
Parkins, A. S. ;
Kippenberg, T. J. ;
Vahala, K. J. ;
Kimble, H. J. .
NATURE, 2006, 443 (7112) :671-674
[3]   High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. ;
Mackowski, J. -M. ;
Michel, C. ;
Pinard, L. ;
Francais, O. ;
Rousseau, L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[4]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[5]   Cryogenic properties of optomechanical silica microcavities [J].
Arcizet, O. ;
Riviere, R. ;
Schliesser, A. ;
Anetsberger, G. ;
Kippenberg, T. J. .
PHYSICAL REVIEW A, 2009, 80 (02)
[6]  
Braginsky V., 1995, QUANTUM MEASUREMENT
[7]  
Braginsky V B., 1977, Measurement of Weak Forces in Physics Experiments
[8]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[9]   Amplification and squeezing of quantum noise with a tunable Josephson metamaterial [J].
Castellanos-Beltran, M. A. ;
Irwin, K. D. ;
Hilton, G. C. ;
Vale, L. R. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (12) :929-931
[10]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708