A Role for Codon Order in Translation Dynamics

被引:274
作者
Cannarrozzi, Gina [1 ,3 ]
Schraudolph, Nicol N. [1 ]
Faty, Mahamadou [2 ]
von Rohr, Peter [1 ]
Friberg, Markus T. [1 ]
Roth, Alexander C. [1 ,3 ]
Gonnet, Pedro [1 ]
Gonnet, Gaston [1 ,3 ]
Barral, Yves [2 ]
机构
[1] ETH, Inst Computat Sci, CH-8092 Zurich, Switzerland
[2] ETH, Inst Biochem, CH-8093 Zurich, Switzerland
[3] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
AMINOACYL-TRANSFER-RNA; SACCHAROMYCES-CEREVISIAE; PROTEIN-SYNTHESIS; EXPRESSION PROFILES; GENE-EXPRESSION; CELL-CYCLE; USAGE; YEAST; BIAS; GENOME;
D O I
10.1016/j.cell.2010.02.036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genetic code is degenerate. Each amino acid is encoded by up to six synonymous codons; the choice between these codons influences gene expression. Here, we show that in coding sequences, once a particular codon has been used, subsequent occurrences of the same amino acid do not use codons randomly, but favor codons that use the same tRNA. The effect is pronounced in rapidly induced genes, involves both frequent and rare codons and diminishes only slowly as a function of the distance between subsequent synonymous codons. Furthermore, we found that in S. cerevisiae codon correlation accelerates translation relative to the translation of synonymous yet anticorrelated sequences. The data suggest that tRNA diffusion away from the ribosome is slower than translation, and that some tRNA channeling takes place at the ribosome. They also establish that the dynamics of translation leave a significant signature at the level of the genome.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 36 条
[1]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[2]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[3]   CODON-ANTICODON PAIRING - WOBBLE HYPOTHESIS [J].
CRICK, FHC .
JOURNAL OF MOLECULAR BIOLOGY, 1966, 19 (02) :548-&
[4]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[5]   Selective charging of tRNA isoacceptors induced by amino-acid starvation [J].
Dittmar, KA ;
Sorensen, MA ;
Elf, J ;
Ehrenberg, M ;
Pan, T .
EMBO REPORTS, 2005, 6 (02) :151-157
[6]   Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates [J].
Dong, HJ ;
Nilsson, L ;
Kurland, CG .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 260 (05) :649-663
[7]   tRNA gene number and codon usage in the C-elegans genome are co-adapted for optimal translation of highly expressed genes [J].
Duret, L .
TRENDS IN GENETICS, 2000, 16 (07) :287-289
[8]   Selective charging of tRNA isoacceptors explains patterns of codon usage [J].
Elf, J ;
Nilsson, D ;
Tenson, T ;
Ehrenberg, M .
SCIENCE, 2003, 300 (5626) :1718-1722
[9]  
Friberg MT, 2006, LECT NOTES COMPUT SC, V4175, P1
[10]   Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p [J].
Gasch, AP ;
Huang, MX ;
Metzner, S ;
Botstein, D ;
Elledge, SJ ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (10) :2987-3003