Microbial Fuel Cells, A Current Review

被引:308
作者
Franks, Ashley E. [1 ]
Nevin, Kelly P. [1 ]
机构
[1] Univ Massachusetts, Dept Microbiol, Amherst, MA 01002 USA
关键词
microbial fuel cell; extracellular electron transfer; conductive biofilm; EFFECTIVE ELECTRICITY-GENERATION; EXTRACELLULAR ELECTRON-TRANSFER; ANAEROBIC BENZENE OXIDATION; METAL-REDUCING BACTERIUM; WASTE-WATER TREATMENT; GEOBACTER-SULFURREDUCENS; POWER-GENERATION; OXYGEN REDUCTION; HARVESTING ELECTRICITY; FE(III) REDUCTION;
D O I
10.3390/en3050899
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Microbial fuel cells (MFCs) are devices that can use bacterial metabolism to produce an electrical current from a wide range organic substrates. Due to the promise of sustainable energy production from organic wastes, research has intensified in this field in the last few years. While holding great promise only a few marine sediment MFCs have been used practically, providing current for low power devices. To further improve MFC technology an understanding of the limitations and microbiology of these systems is required. Some researchers are uncovering that the greatest value of MFC technology may not be the production of electricity but the ability of electrode associated microbes to degrade wastes and toxic chemicals. We conclude that for further development of MFC applications, a greater focus on understanding the microbial processes in MFC systems is required.
引用
收藏
页码:899 / 919
页数:21
相关论文
共 144 条
[91]   Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer [J].
Pham, The Hai ;
Boon, Nico ;
Aelterman, Peter ;
Clauwaert, Peter ;
De Schamphelaire, Liesje ;
Vanhaecke, Lynn ;
De Maeyer, Katrien ;
Hoefte, Monica ;
Verstraete, Willy ;
Rabaey, Korneel .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 77 (05) :1119-1129
[92]   Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences [J].
Phung, NT ;
Lee, J ;
Kang, KH ;
Chang, IS ;
Gadd, GM ;
Kim, BH .
FEMS MICROBIOLOGY LETTERS, 2004, 233 (01) :77-82
[93]   A computational model for biofilm-based microbial fuel cells [J].
Picioreanu, Cristian ;
Head, Ian M. ;
Katuri, Krishna P. ;
van Loosdrecht, Mark C. M. ;
Scott, Keith .
WATER RESEARCH, 2007, 41 (13) :2921-2940
[94]  
POSTIER BL, 2008, J MICROBIOL IN PRESS
[95]  
Potter M.C., 1910, Proc. Univ. Durham Phil. Soc, V3, P245
[97]   Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell [J].
Prasad, D. ;
Arun, S. ;
Murugesan, A. ;
Padmanaban, S. ;
Satyanarayanan, R. S. ;
Berchmans, Sheela ;
Yegnaraman, V. .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (11) :2604-2610
[98]   Microbial phenazine production enhances electron transfer in biofuel cells [J].
Rabaey, K ;
Boon, N ;
Höfte, M ;
Verstraete, W .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (09) :3401-3408
[99]   A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency [J].
Rabaey, K ;
Lissens, G ;
Siciliano, SD ;
Verstraete, W .
BIOTECHNOLOGY LETTERS, 2003, 25 (18) :1531-1535
[100]   Biofuel cells select for microbial consortia that self-mediate electron transfer [J].
Rabaey, K ;
Boon, N ;
Siciliano, SD ;
Verhaege, M ;
Verstraete, W .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (09) :5373-5382