A genome-scale computational study of the interplay between transcriptional regulation and metabolism

被引:177
作者
Shlomi, Tomer [1 ]
Eisenberg, Yariv
Sharan, Roded
Ruppin, Eytan
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Med, IL-69978 Tel Aviv, Israel
关键词
FBA; metabolism; MILP; regulation; SR-FBA;
D O I
10.1038/msb4100141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents a new method, steady-state regulatory flux balance analysis (SR-FBA), for predicting gene expression and metabolic fluxes in a large-scale integrated metabolic-regulatory model. Using SR-FBA to study the metabolism of Escherichia coli, we quantify the extent to which the different levels of metabolic and transcriptional regulatory constraints determine metabolic behavior: metabolic constraints determine the flux activity state of 45-51% of metabolic genes, depending on the growth media, whereas transcription regulation determines the flux activity state of 13-20% of the genes. A considerable number of 36 genes are redundantly expressed, that is, they are expressed even though the fluxes of their associated reactions are zero, indicating that they are not optimally tuned for cellular flux demands. The undetermined state of the remaining similar to 30% of the genes suggests that they may represent metabolic variability within a given growth medium. Overall, SR-FBA enables one to address a host of new questions concerning the interplay between regulation and metabolism.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
AKASHI H, 2003, BIOINFORMATICS S2, V19, P15
[2]   Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states [J].
Bilu, Yonatan ;
Shlomi, Tomer ;
Barkai, Naama ;
Ruppin, Eytan .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (08) :932-938
[3]   Integrating high-throughput and computational data elucidates bacterial networks [J].
Covert, MW ;
Knight, EM ;
Reed, JL ;
Herrgard, MJ ;
Palsson, BO .
NATURE, 2004, 429 (6987) :92-96
[4]   Constraints-based models: Regulation of gene expression reduces the steady-state solution space [J].
Covert, MW ;
Palsson, BO .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 221 (03) :309-325
[5]   Regulation of gene expression in flux balance models of metabolism [J].
Covert, MW ;
Schilling, CH ;
Palsson, B .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 213 (01) :73-88
[6]   Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae -: A chemostat culture study [J].
Daran-Lapujade, P ;
Jansen, MLA ;
Daran, JM ;
van Gulik, W ;
de Winde, JH ;
Pronk, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (10) :9125-9138
[7]   Modeling and simulation of genetic regulatory systems: A literature review [J].
De Jong, H .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (01) :67-103
[8]   Multiple knockout analysis of genetic robustness in the yeast metabolic network [J].
Deutscher, David ;
Meilijson, Isaac ;
Kupiec, Martin ;
Ruppin, Eytan .
NATURE GENETICS, 2006, 38 (09) :993-998
[9]   The Escherichia coli MG1655 in silico metabolic genotype:: Its definition, characteristics, and capabilities [J].
Edwards, JS ;
Palsson, BO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5528-5533
[10]   Metabolic flux responses to pyruvate kinase knockout in Escherichia coli [J].
Emmerling, M ;
Dauner, M ;
Ponti, A ;
Fiaux, J ;
Hochuli, M ;
Szyperski, T ;
Wüthrich, K ;
Bailey, JE ;
Sauer, U .
JOURNAL OF BACTERIOLOGY, 2002, 184 (01) :152-164